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Pattern Formation and Oscillatory Dynamics in a Two-Dimensional Coupled
Bulk-Surface Reaction-Diffusion System*

Frédéric Paquin-Lefebvre’, Wayne Nagata!, and Michael J. Ward?

Abstract. On a two-dimensional circular domain, we analyze the formation of spatio-temporal patterns for a
class of coupled bulk-surface reaction-diffusion models for which a passive diffusion process occurring
in the interior bulk domain is linearly coupled to a nonlinear reaction-diffusion process on the domain
boundary. For this coupled PDE system we construct a radially symmetric steady state solution
and from a linearized stability analysis formulate criteria for which this base state can undergo ei-
ther a Hopf bifurcation, a symmetry-breaking pitchfork (or Turing) bifurcation, or a codimension-two
pitchfork-Hopf bifurcation. For each of these three types of bifurcations, a multiple time-scale asymp-
totic analysis is used to derive normal form amplitude equations characterizing the local branching
behavior of spatio-temporal patterns in the weakly nonlinear regime. Among the novel aspects of this
weakly nonlinear analysis are the two-dimensionality of the bulk domain, the systematic treatment
of arbitrary reaction kinetics restricted to the boundary, the bifurcation parameters which arise in
the boundary conditions, and the underlying spectral problem, where both the differential operator
and the boundary conditions involve the eigenvalue parameter. The normal form theory is illustrated
for both Schnakenberg and Brusselator reaction kinetics, and the weakly nonlinear results are favor-
ably compared with numerical bifurcation results and results from time-dependent PDE simulations
of the coupled bulk-surface system. Overall, the results show the existence of either subcritical or
supercritical Hopf and symmetry-breaking bifurcations, and mixed-mode oscillations characteristic
of codimension-two bifurcations. Finally, the formation of global structures such as large amplitude
rotating waves is briefly explored through PDE numerical simulations.
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1. Introduction. If a passive linear diffusion process in a bounded domain is coupled to
a nonlinear reaction-diffusion process on the domain boundary, spatio-temporal patterns can
occur that otherwise would not be present without this bulk-surface coupling. Such a pattern
formation mechanism is relevant in a variety of applications in which boundaries play an active
role in the overall dynamics. For instance, in some biological cell signalling contexts certain
proteins cycle from an active cellular membrane to a cytoplasmic bulk via adsorption and
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desorption processes. Applications of this type include the formation of surface-bound Turing
patterns through symmetry-breaking instabilities (cf. [18], [22], [23]) as well as the onset of
Min-protein pole-to-pole oscillations prior to cell division in E. Coli (cf. [15], [14]). In many
prior studies (e.g., [22], [23], [18]), the coupled bulk-surface systems have mainly been analyzed
through either a linear stability analysis, which typically involves finding the conditions for a
Turing-type diffusion-driven instability, or from time-dependent PDE numerical simulations
(cf. [20], [19]).

In a simplified geometry consisting of a one dimensional (1D) spatial bulk domain, these
models become coupled PDE-ODE models and were studied in [7], [10], [11], and [8]. There,
dynamically active units, modeled by nonlinear ODEs, are spatially segregated and are cou-
pled through a linear bulk diffusion field. This setup serves as a modeling paradigm for the
study of synchrony under diffusion sensing. In contrast to the classical types of PDE-ODE
models where the coupling occurs in all of space (cf. [16]), the type of coupling considered
here, and in [7]-[8], is restricted to the boundaries, and is expressed in terms of Robin-type
boundary conditions. In [7]-[8], this class of 1D coupled PDE-ODE systems was analyzed
through a combination of linear stability analysis, direct numerical PDE simulations, and
numerical bifurcation software. The numerical bifurcation studies have allowed for the com-
putation of global branches of synchronous and asynchronous periodic solutions in terms of
bulk diffusion coefficients and coupling rates. As an extension of the linear stability theory,
in [10] a weakly nonlinear analysis was developed to study the local branching behavior of
synchronous oscillations for the idealized case of a single bulk species diffusing between two
identical membranes, each consisting of a single active species.

To extend this previous work, our goal in this paper is to provide a comprehensive weakly
nonlinear, or normal form, analysis to study the various bifurcations associated with a class
of dimensionless coupled bulk-surface reaction-diffusion systems for which the bulk domain €2
consists of the disk

(1.1) Q={zecR?||z| <R}

of radius R. In the bulk domain we assume that two bulk species U, V undergo passive
diffusion with linear decay in €2. This leads to the following PDEs in the bulk region

a—U:DuAU—cruU, a—V:DUAV—UUV, reQ, t>0.
ot ot

Here D,,, D, are the constant bulk diffusion coefficients, while o,,, o, are the constant bulk
decay rates. Since  is the disk, the Laplacian A in (1.2) is conveniently written in terms of
polar coordinates (r,0) as A = Oy + 710, + r720p9. Next, we assume that the flux normal
to the boundary is proportional to the difference between the surface-bound species densities,
denoted by u, v, and the bulk species densities evaluated on the boundary. This yields linear
Robin-type boundary conditions for (1.2):

oUu oV
. =Ky (u - U|7‘:R) 5 Dy — =K, (U - V’T:R) )

or|,._p

(1.2)

(1.3) D,
or|,._p

where K,,, K, are coupling rate constants, also known as Langmuir rate constants. Finally,
on the domain boundary the dynamics of the two surface-bound species are assumed to be
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governed by a system of reaction-diffusion equations with periodic boundary conditions in the
azimuthal coordinate:

(1.4)
ou  dy 0%u v dy 0%
o~ o Kulw—Ul=r)+flw,v), 5 =15om — Ko (v=Vl=r) +9(u,v).

Here f(u,v) and g(u,v) are the given reaction kinetics, while d,, d, are surface diffusion co-
efficients. In the absence of surface diffusion, this model reduces to the coupled PDE-ODE
system studied through linear stability analysis in [18] for a slightly different boundary con-
dition and with Gierer—Meinhardt kinetics on the circular membrane. As a remark, since a
biologically realistic membrane possesses some width, the coupled bulk-surface model, defined
by (1.2)—(1.4), provides only an approximation to this more complicated setting in the case
where the width of the membrane is small in comparison with the characteristic length scale
of the bulk domain. Our coupled bulk-surface model, as introduced above, is given in dimen-
sionless form. We refer the reader to Appendix B for a derivation of the system (1.2)—(1.4)
from a model with physical units.

Our primary goal herein is to characterize the dynamics of the coupled system in the
weakly nonlinear regime near one of three distinct bifurcations; a Hopf bifurcation, for which
the spatial mode is trivial with a nonzero temporal frequency, a pitchfork bifurcation, for which
the spatial mode is nontrivial with a zero temporal frequency, and finally a codimension-two
pitchfork-Hopf bifurcation, which occurs when the previous two bifurcations coincide. By
deriving amplitude, or rather, normal form equations, we will characterize the branching
behavior in the vicinity of these three bifurcations. Although the use of weakly nonlinear
analysis to study pattern formation in reaction-diffusion systems, convection processes, and
fluid flows is well established and ubiquitous in the literature (cf. [3], [26]), the develop-
ment of a weakly nonlinear theory to characterize pattern formation near bifurcation points
of coupled bulk-surface models requires a careful analysis of the spectral problem for the
linearization, where both the differential operator and the boundary conditions involve the
eigenvalue parameter. This analysis is at the core of performing a weakly nonlinear analysis
using a multiple time-scale expansion method. We believe such a spectral problem has not
been considered previously in the context of two-dimensional pattern formation problems.
We also give a systematic treatment of the three distinct bifurcations for arbitrary reaction
kinetics on the surface.

In our formulation, we will suppose that when uncoupled from the bulk domain, the
reaction-diffusion system on the surface (1.4) possesses a unique spatially uniform steady
state, which is linearly stable with respect to any spatial perturbation. Consequently, we will
restrict the parameter space to cases where d,, = d,, in order to avoid the short-range activation
combined with long-range inhibition paradigm, typical of Turing instabilities. Rather than
using the surface diffusion coefficients as bifurcation parameters, we will vary the bulk diffusion
coefficients and the coupling rates, so that the loss of stability of the base state results from
the diffusive coupling with the bulk domain. In terms of these bifurcation parameters that are
associated with the boundary conditions (1.3), in section 2 we find that multiscale expansion
methods are particularly convenient for deriving amplitude equations characterizing the local
branching behavior.
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Although arbitrary reaction kinetics are employed in our analysis, we will apply our weakly
nonlinear theory to either the well-known Schnakenberg or Brusselator kinetics. In nondimen-
sional forms, the Schnakenberg kinetics are

(1.5) fu,v) =a—u+u?v, g(u,v) = b—u?v, a,b>0, b—a<(b+a)?,
while the Brusselator kinetics are given by
(1.6)  f(u,v) =a— (b+1)u+u?v, g(u,v) = bu — u?v, a>0, 0<b<a®+1.

To validate our weakly nonlinear theory, a combination of numerical bifurcation analysis,
for the computation of global bifurcation branches, and full time-dependent PDE numerical
simulations are employed. Classical values for the parameters a and b are used. For the
Schnakenberg kinetics, these are a = 0.1 and b = 0.9 (cf. [20]). For the Brusselator kinetics,
a = 3 will be taken, while different values of b, all with b < a? + 1, will be considered. For
these parameters values, the uncoupled bulk-surface system without surface diffusion admits
a unique stable steady state and no patterns appear. In this way, the patterns observed
arise from the coupling between the bulk and surface. We remark that a symmetry-breaking
bifurcation mechanism for particular forms of the nonlinearities has also been explored in [22]
and [20] through full PDE simulations.

The outline of this paper is as follows. In section 2, for arbitrary reaction kinetics, we
derive amplitude equations (normal forms) near either a Hopf, a pitchfork, or a pitchfork-
Hopf bifurcation point of the linearization of the base state. In section 3, we analyze these
normal forms and interpret their equilibria in terms of limit cycles or Turing-type patterns
of the coupled original system. Subsections 3.1 and 3.2, respectively, treat separately the
codimension-one and the codimension-two cases. Numerical validation of the weakly nonlin-
ear theory with the classical Schnakenberg and Brusselator reaction kinetics is provided in
section 4. Section 5 is distinct from the previous sections in that, through PDE simulations, it
gives a glimpse into novel nonlinear patterns that can occur for the coupled system away from
bifurcation points. In particular, the dynamics and formation of rotating waves is explored
for a coupled bulk-surface reaction-diffusion system with a slightly more general boundary
condition than (1.3). Finally, in section 6, we briefly summarize the paper and discuss a few
open problems that warrant further study.

2. Weakly nonlinear theory. In this section, the method of multiple time-scales is used to

derive amplitude equations describing the branching behavior near three distinct bifurcations:

e Trivial mode n = 0 undergoes a Hopf bifurcation, at which the bifurcating solution is
invariant under rotation and reflection symmetries.

e Nontrivial mode {n,—n} € Z\{0} loses stability through a pitchfork bifurcation, at
which the bifurcating solutions are equivariant under rotation and reflection symme-
tries.

e Pitchfork-Hopf (Turing-Hopf), when the previous two bifurcations occur simultane-
ously.

From the linear stability analysis, curves of codimension-one bifurcation points and their
codimension-two intersection have been computed in the plane of parameters (K,, D,) (see
Figures 1 and 2 below in section 4). This motivates introducing a two-parameter bifurcation
analysis.
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2.1. Preliminaries. Before formulating the multiple time-scale asymptotic expansion, the
coupled bulk-surface system (1.1)—(1.4) is rewritten as an evolution equation, which then
facilitates below the introduction of an extended linear operator and its adjoint:

DyAU — o,U
D,AV — o,V
Ssugy — Koy (u—U) + f(u,v)
Svgp — Ky (v —V) + g(u, v)

(2.1) W=FW)=

Here F' is a nonlinear functional acting on VW, defined as a space of vector functions whose
components satisfy the appropriate Langmuir boundary conditions:

0)

9) DuarU|r:R = Ku ('LL - U‘T:R)
)

)

Ul(r,
B [ V(r,
(2.2) W= yWw=|", D8,V |p—g = Ky (v — Vl]y=g)

(6
v(6

The radially symmetric steady state (i.e., the base state) for (2.1) is given by

AO(O) IO(Wu’I”) GTU . KuI ( uR)
Io(qu) 1 ¢ Wy = %u ) AO(O) = DuWuI(l)(wu]%)j‘KuIO(qu)’
(2.3) W, = Bo(0) 1{0((:}%;)) egue ) s Bo(0) — KyIo(wyR)
Ou“ Wyv =4/ D, > 0(0) = Dowo (o R)+ Ko Io(wo R)
e
where u. = (ue,ve)? is the surface steady state vector satisfying the nonlinear algebraic
equation
0) = Dywy I (wuR)
(2.4) {Kupo(())ue — f(ue,ve) =0, po(0) = Duwulf(wuR)+ Kulo(wuR)”
: o — . Dywy I} (wy R)
quo (O)Ue g(uea Ue) 07 qO(O) = Dvwvl(l)(va;)+KvIO(va) .

Here I,,(z) for n € Z are the usual modified Bessel functions. Next, by expanding the nonlinear
functional about the base state, we get

(2.5)
W =F(Wo)+LW — W) + BW — W, W — W) +C(W — Wo, W — We, W — W) +...,
=0

where L is the linearized operator defined by

D,AU — o, U

D, AV — o,V
%uge —Ky(u—=U)+ fu+ fiv |’
Lsvge — Ky (0 — V) + gou + gv

(2.6) LW) =
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while B and C are, respectively, bilinear and trilinear forms. For each n € Z, the eigenfunctions
for the linearized operator are given by

(2.7)
An A In(Sur) €T¢n Aoy KyIn(QuR)
W, = ( )?L o) ; yind Q=52 AN = Do R @)
n — Bn(A) Tn(Q0 R) d)n ’ Qv _ [Atow Bn()\) _ ,Kvln(QuR) .
¢)n DU ) D1;Q1JIn(QvR)+KUIn(QvR)

The eigenvector ¢, = (¢n,1,)7 satisfies a homogeneous linear system

28) 12060 = [ =3 = (Kupa) + 22 ) B = (Ko + 52 ) 2] 80 =0,

with Je, E1, Ea, pp(A), and ¢, (\) defined as

(2.9)
DI, (2 R) _
J, = (fe f5> B = el € R2X2 PN = DR Kl m = L A,
= e ) Fi=Ei¢ ) D, I, (20 R)
gu v qn()\> Dol (W R)+ Koln (W R) =1- Bn()\)

Here, the vectors e; and es form the standard orthonormal basis in the phase space defined
by the species u and v. A nontrivial solution to system (2.8) will exist when the following
transcendental equation is satisfied:

(2.10) Fo(\) = det [@,(\)] = 0.

In the multiscale analysis below, an application of the solvability condition requires the
formulation of an adjoint linear operator £*, defined by

DUAU* - UUU*
* * DvAV* - O-UV*
(2.11) LAW™) = bygy — Ky (uw* — U*) + fou* + gov*

Lovgy — Ky (v — V*) + feu* + gov*

For the special case of Langmuir boundary conditions, the dual space satisfies W* = W,
which means that both the boundary conditions and their adjoint are identical. Furthermore,
the adjoint eigenfunctions yield

In(mr) T

I 0. R) €1 Pn
In(er) T * e
(W R) 2

¢*

It is then readily verified that W,, and W} form an orthogonal set of eigenfunctions, satisfying

inf

(2.12) Wy = Bn(\)

(2.13) Wi W) =0 ifm#n,
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where the inner product in (2.13) is defined by
2r rR L 2r L
(2.14) (WX W) = / / [U*U + V*V| rdrdf + / [wFu + vv] Rdf.
o Jo 0

The set of eigenfunctions can be normalized so that (W;, W,) = 1 for all n. Finally, using
the previous definitions of linear operators, eigenfunctions, and inner product, one may easily
verify that the following properties hold:

(2.15) LWy, = AW, LW = AW, (W*, LW) = (LW, W).

Lastly, we define more precisely the bilinear and trilinear forms that arise in the expansion
(2.5). They are defined by

0 0
(2.16) B(W,, W) = 0 e, Wi W) = 0
B(’U,J,Uk) C(Uj,Uk,Ul)

The first two components of B and C vanish since the diffusion process occurring in the bulk
is linear. The reduced bilinear and trilinear forms B and C are defined by

(I® ulT) Te(u; @ uy) ,

=

(I®uy) Houj,  Cluj, up,w) =

| =

B(uj,uy) =

where ® is the Kronecker product and H.,T, are matrices involving the second and third
order partial derivatives

€ € € € € €
uu uv uuu uuv uuv uvvY

Jow o Jow o Jiww  To

— uv VU — uuv uvv uvv VUV

He= 7w Jow | T, = |0 Qe
guu guv guuu g’U/LLU guuv guvv

Juw  Gov Juww  Juvv  uvw  Jowo
2.2. Multiscale expansion. Let u = (K,, D,)? denote the vector of bifurcation parame-

ters. As usual, a slow time-scale 7 = €%¢, with ¢ < 1, is introduced. Using the same scaling,
the parameters are slightly perturbed,

(2.17) p=po+em,  |ml =1

Here pg is the bifurcation point and p; is a unit vector indicating the direction of the bifurca-
tion. The full system is then expanded in a regular asymptotic power series around the base
state as

(2.18) W =W, +eWi +2Ws + W5 + O (%),

where the subscript here refers to the expansion order rather than the mode of the eigenfunc-
tion. Next, by inserting (2.17) and (2.18) into (2.5), and collecting powers of £ we obtain
that
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(2.19)

0
2 3 2 waVe(r)es

eO W + €20 Wy + (0 W3 + 0, W1) = e LW + & | LWo + B(W1,Wh) + 0
—qo(0)vee] 1

0
3 LgavvlezTﬂl 4
+¢e° | LW3 + 2B(Wq, Wa) + C(Wy, Wy, W1) + I +0 (%),

—(v1 = Vilr=r)ef 1

where the vectors e; and ey are now the standard orthonormal basis in the parameter space
defined by K, and D,. The perturbed boundary conditions satisfy

(2.20)

3
Y & (DudUj + KUy — Kyuy) + O (1) =0, r=R,
j=1

3
7 (D00, Vj + Ko Vi — Kyovj) — (£2q0(0)ve + €3 (v1 — 1)) BLun + O (e*) =0, r=R,
=1

J

where the vector § is defined by

(2.21) b= <—Ku;/Dvo> '

2.3. Weakly nonlinear analysis of patterns. The leading order solution corresponds to
the base state defined by (2.3) evaluated at the bifurcation point p = pg. Next, by collecting
terms at O (¢) we get the linearized problem

DUy = Ky(uy — UY),
(2.22) AW = L0 W), ! (w1 =) r=R
Dvoar‘/l = KUO(UI - V1)7

Here the notation L(uo;-) indicates that the linear operator is evaluated at the bifurcation
point. The solution of the linearized system depends on the type of bifurcation and the spatial
mode considered. We will consider the following three cases.
e Hopf bifurcation. The critical eigenvalues and spatial mode are, respectively, A =
+iA; and n = 0, which yields

(2.23) Wi = Wodo(1)eMt + WAy (r)e ™M,

where the eigenfunction W is evaluated at pg and A\j = iAg.

e Pitchfork bifurcation. The critical eigenvalue is A = 0, and because of the reflection
symmetry, if n # 0 is a critical spatial mode, then so is —n. Moreover, it is known
that the center manifold preserves the symmetries of the system. Therefore, the center
eigenspace and manifold are also two-dimensional, and the solution in the linear regime
has the form
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(2.24) Wi = WhAp(1) + W_nAy(7),

where W.,, are evaluated at pug and A = 0.

e Pitchfork-Hopf bifurcation. The critical spatial modes are {0,n, —n}, with n # 0,
and the bifurcating eigenvalues of the linearized problem are {+iA;,0}. This yields a
four-dimensional center eigenspace of the form

(2.25) W1 = WodAo(T)eM + WoAo(T)e M4 W, A (T) + W An (7).

Again, all the eigenfunctions above are evaluated at the bifurcation point and the
critical set of eigenvalues.
The goal of our analysis is to derive evolution equations for the complex amplitudes Ay and
A, where the subscript here indicates which spatial mode has exchanged stability through
the bifurcation.
By collecting terms of order O(€?) in (2.19), we obtain

0
w2Ve(r)eq i

0 b
—q0(0)veel 1y

(2.26) oWy = E(Mo; Wg) + B(Wl, Wl) +

together with the appropriate boundary conditions, as obtained from (2.20):

Dud Uy = Ky (ug — Usy),
(2.27) 2 (uz = U2) . r =R
D00, Vo = Kyo(va — Vo) + qo(0)ve 8" 11,

The evaluation of the quadratic terms B(W7, W) will depend on whether we consider the
bifurcations (2.23), (2.24), or (2.25). Below, the nontrivial part of the bilinear form is stated
explicitly for each case.

e Hopf bifurcation:

(2.28)  B(ui,u1) = A3B(¢o, o)e* " + 2| Ag|> B(o, $o) + Ao” B(o, do)e 2"
e Pitchfork bifurcation:
(2.29)
Bluy,wy) = A2B(¢n, pn)e>™ + 2| An> B(n, b—n) + An B, p_n)e 2"
e Pitchfork-Hopf bifurcation:
(2.30)
B(ui,u1) = A3B(¢o, po)e* " + 2| Ao|* B(gpo, o) + Ao” B(¢bo, po)e 2N
+ A2 B, )2 + 2| A 2B, ) + An - B(P, pp)e 2
+ 2A0 A, B(¢po, ¢n)ei(n9+>\1t) + 2404, B(éo, ¢_n)€i(—n9+>\[t)
+ 240 A, B(¢o, ¢n) e MY 4 AT, B(g, oy )e{MOFAD

Once again, because of the reflection symmetry, we have that ¢, = ¢_,,. By examining these
bilinear forms, the following ansatz can be formulated for the solution of the system (2.26).
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e Hopf bifurcation:
. L L
(2.31) W = Woooo + A5 Waoooe® " + | Ao|*Wi100 + Ao Wozooe ¢ .
e Pitchfork bifurcation:
—
(2.32) Wa = Woooo + A2 Woo20 + | An*Woo11 + An” Woooz -
e Pitchfork-Hopf bifurcation:
(2.33)
. 72 _ .
Wa = Woooo + A2Waoooe® 1 4 | Ag|2Wi100 + Ao~ Wozooe 21t
—
+ A2Woo2o + | An|*Woo11 + A Woooz
+ Ao A Wio10e™ 1t + Ag A, Wigo1e™ 1t + Ag A Worioe™ M + Ag A, Worgre MY

Next, we briefly outline the computation of the term Wyggo. This term arises from the
perturbation of the bifurcation parameters within the base state and satisfies

0
w2Ve(r)eq i
0
—qo(0)veed 11

{DuarUODOO = Ky (uo0000 — Uoooo),

(2.34) L1105 Woooo) + =0,

r=R.
Dy00:Voooo = Kvo(voooo — Voooo) + qo(0)veST 1,

Solving for Upyggg, one obtains the same expression as for the steady state profile, given by

Iy(wyr)

— T
(235) U()()()() = A()(O) Ig(qu) 61 woo0oo -

Since the equation for Vjggg is forced by a multiple of the steady state solution, the reduction
of order method is used to yield the following ansatz:

Ip(wyr)

(2.36) Voooo = (70 + ’Yl(T))IO(va) 7

with ~1(0) =0,

where 71 (r) is found to satisfy the second-order differential equation

Wy

(2.37) () Io(wyr) + 71 (1) <2wv11(wvr) + iIo(wUr)> + D

eX 11 Bo(0) Io(wyr)ve = 0.

v0

The ODE (2.37) is readily solved using rIy(w,r) as an integrating factor. By integrating twice,
we obtain that

__emBoOue (<7 | (L(p))’
= ) = -S| pll (Io<p>>]d
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Then, upon application of the perturbed boundary condition, we determine the constant g as

0)By(0 DyoBo(0
(2.39) 70 = Bo(0)voooo + /BTMIM'Ue — 7 (R) - ﬂ%(}g) )
Kvo KUO
Next, the evaluation of Uygog and Vyogo on the boundary leads to
Uoooo) < Ao(0)uoooo >
2.40 = )
(2.40) <Voooo —r  \Bo(0)voooo + AT s

where the coefficient of the detuning vector is given explicitly by

qO(O)Bo(O)e n WKy R(IZ(wyR) — I} (wyR)) /2 — wy Kyolo(wy R) 1 (wy R)
Ko (Duowo T (WoR) + KyoTo(wyR))?

(241) A= €9 .

Finally, the substitution of (2.40) into the constraint (2.34) for the membrane components
determines uggog as

(2.42) D (110; 0)ugooo = o p11 B, = w000 = a 11 [®o (1105 0)]  Eau, .

Here the vector coefficient « is defined by

a = qo(0)er — KA

w, K2
= (qo(0))%e1 + .

(Dvowvll (va) + Kyolo (WUR>)2
2R (13 ) - B R) )

(2.43) <Io(va)Il (woR) + =5

Many of the nontrivial Wjy,, can be found using the spatial and temporal reflection symme-
tries of the reduced system. Here, the linear inhomogeneous problems to be solved are listed
below.

Starting with the Hopf bifurcation, where Wyoog = Wagqgo, it is readily found that Waggq
satisfies

(2.44)
Ao(2iAr) 7GRy e waooo
L (103 Wao00) — 2iArWaooo = —B(Wo, Wo) = Waooo = | By(2iA; ){3((3;“ )) eTugono | -
U000

where 9, and (), are defined by

24\ 21
QQu: 0u+117 QQU: UU—’_ZI‘
D,

Next, solving for Wi1gg leads to

Ao(0) IIS((W R)) et w1100

(245) L (po; Wii00) = —2B(Wo, Wo) = Wii00 = BO(O){S((;”“;)) eTui100

U1100

Finally, usgoo and w1109 each satisfy the following two-dimensional linear systems:
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(2.46) [®0 (105 2iA1)] w2000 = —B(¢o, ¢o) [®0(10; 0)] w1100 = —2B(¢po, o) -

With regards to the pitchfork bifurcation, reflection symmetry guarantees that Wygge =
Woo20. Hence, the systems to be solved and their solutions are given by

A2n(0) {;n((w R)) 6?’(1,0020

(2.47) L (o; Wooz0) = —=B(Wn, Wh) = Woo20 = an(O)% T w0020 e*n
U0020
and

Ao(0) 7 ((:,J "1?) ef uoon

(2.48) L (Mo; W{]Oll) = —QB(WR, W_n) = W0011 = Bo(O) IO((wUR)) e ugo11

Uoo11

Here wgp20 and wugp11 satisfy the reduced linear systems

(2.49) (@2, (1205 0)] o020 = —B(Pn, dn) [®0(110;0)] w011 = —2B(Pn, P_1) -

The Wiy, common to both the codimension-one and codimension-two bifurcations remain
the same. In addition to those terms, one needs to solve for the mixed coefficients Wyg19 and
Wioo1 as follows,

(2.50)
An(ig )II:((S?:Q) U1010
L (p0; Wioro) — iAtWioro = —=2B(Wo,Wa) = Wiowo = | B, (i), )II:((ng))eg 1010 e’
1010
and
(2.51)

Ay (iXg )11:(( ))61 U1001
L (p0; Wioo1) — iAtWioor = —2B(Wo, W—p,) =  Wiom = | B, 2, )I"((Q R))e2 U1001 e

U1001

where w1910 = w1001 (because ¢, = ¢_,,), which satisfies the further two-dimensional linear
system

(2.52) (@4, (1203 1A 1)] w1010 = —2B (0, D) -
The remaining coefficients are found trivially using symmetries and are
(2.53) Woi01 = Wioio s Woi10 = Wioo1 -

2.4. Solvability condition and amplitude equations. Upon collecting terms of O (%) in
(2.19), we obtain that
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(2.54)
0
eT;LlMVl
OWs3 — L(po; W3) = =0, W1 + 2B(W1, Wa) + C(Wr, Wi, W1) + i ODUO ’

—eT i (v1 — Vilp=r)

while the O (%) terms in the boundary conditions (2.20) yield

D,Us Ky(uz — U3|r=R)> < 0 >
2.55 o, _ n .
(2:55) <Du0V3> r—PR (Kvo(’vs — Vslr=r) BT i (v1 — Vilr=g)
Next, suitable ansatzes are formulated based on the method of undetermined coefficients.
Nonlinear evolution equations for the amplitudes Ay(7) and A, (7) will arise from the appli-
cation of a solvability condition on (2.54) and (2.55).

e Hopf bifurcation. Since n = 0 is the unstable mode, the solution is radially sym-
metric of the form

x1(r)

(2.56) Wi = XeMit 4 XMt x — xz(r)
3

Zq

e Pitchfork bifurcation. The bifurcating branch is stationary and spatially inhomo-
geneous (i.e., angularly dependent)

n (’I”, 9)
ya(r, 0)
2.57 Ws=Y, Y=
220 ’ y3(6)
ya(0)
e Pitchfork-Hopf bifurcation. With X and Y defined as in the other cases, we have
(2.58) Wy = XMt 4 XMt Ly |

When treating the Hopf bifurcation, (2.54) and (2.55) represent a forced oscillatory system.
Typically, the presence of forcing with resonant terms generates secular growth of the solution.
However, since boundedness of the solution is required on the fast time-scale, these secular
terms must be eliminated for self-consistency of the multiple time-scale asymptotic expansion.
This elimination is done using a solvability condition.

Upon substituting (2.56) into (2.54), and equating coefficients of e

(2.59)

i/\ft, we get

0

. Io(Qpr
e%ﬂﬂlQ%BO(Z/\I)[g((QvR)) €g¢0 Ao
0

—ef pqo(ids)
+ (2B(Wo, Wii00) + 2B (Wo, Waooo) + 3C (W, Wo, Wo)) |Ao|* 4o ,

where X satisfies the perturbed boundary condition given by

, dA
iNX — L(po; X) = fWod—TO + | 2B(Wo, Woooo) +
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D T K ($3—x1| R)>:| < 0 >
2.60 0, “ — “ " = . Ag.
(2:60) [ " <Duoﬂ?2> - (Kuo(m — T2|r=R) BT uigo(ixr)ed o) 0
Since its bifurcating solution is stationary, a different argument must be invoked when
treating the pitchfork bifurcation. Again, the substitution of (2.57) into (2.54) leads to

(2.61)
0

I"L v
egul(A}?;Bn (0) T, ((Zv;)) eg¢nein0 An

dA,
+ | 2B(Wh, Woooo) +
dr 0

_e{ﬂlqn(o)
+ (QB(WTL, W()on) + 2B (W_n, Woogo) +3C (Wn, Wi, W_n)) ’AnIQAn + 0O (Tn, Ain?), Ai) ,

- ‘C(/LO; Y) =-—Wh

where Y also satisfies the nontrivial boundary condition

D y1> (Ku(yzs _Z/l’r:R)>] < 0 > ind T
2.62 0 b — = Ane™ + O(Ay) .
(2:62) [ " <Dv0y2 er \Kuvo(ya — y2lr=r) BT 116(0)e3 @) " (4n)
Because of their orthogonality property, the contribution from other circular modes will vanish
when taking the inner product with the adjoint eigenfunction W}. Hence, these terms have
not been explicitly stated.
The same procedure is applied to the codimension-two case where a pitchfork bifurcation

interacts with a Hopf bifurcation. Equating coefficients of e?** leads to a linear inhomogeneous
equation for the coefficient X given by

(2.63)
0
dA T 2 . Io ()
A X = Lipoi X) = _WOTTO + | 2B(0Wo, Woooo) + | MQUBO(OZ/\I)IO(Q”R) e3¢0 | Ao
—e p1qo(irr)

+ (2B(Wo, Wiioo) + 2B (Wo, Wageo) + 3C (Wo, Wo, Wo)) |Ao|* Ao
+ (2BWo, Woor1) + 2B(Wa, Wigo1) + 2BV —_n, Wio10) + 6C(Wo, Wa, W_0)) |An|* Ao

+O (AOAEL,AOEQ) ,

which is subject to the same boundary condition as for the Hopf bifurcation (see (2.60)).
The term Y, which is constant on the fast time-scale, satisfies

(2.64)
0
dAn T 2BTL O In(wv"') )
— £(M0; Y) = —WnF + 2B(Wn, WOOOO) + 2 f1ty 0( )In(qu) eg(f)neme Ay
_e{lu’lfh(o)

+ (2B Wh, Woo11) + 2B (W—_p, Woo20) + 3C (Wi, Wi, W_,)) ’An|2An
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+ (2B(Wy, Wiig0) + 2BWo, Wor10) + 2B (Wo, Wigio) + 6C (Wo, Wo, Wi)) |Aol* A,
+ 0 (An A", A%, | 404,
and is subject to the same boundary condition as for the pitchfork bifurcation (see (2.62)).
The next two lemmas, involving our solvability conditions, provide necessary conditions
under which systems (2.59), (2.61), (2.63), and (2.64), together with the appropriate boundary

conditions (2.60) and (2.62), admit a solution. Lemma 2.1 is general, while Lemma 2.2 is
specific to each bifurcation.

Lemma 2.1. Let {W,,Wx} be an orthogonal pair composed of an eigenfunction and its
adjoint, and let A\. denote the critical eigenvalue at a given bifurcation point p = pg € RP
(p independent bifurcation parameters). Then,

ixf n=0,

(2.65) L(po; Wa) = AW, L*(po; W) = A5 Ao =
0 n # 0.

Consider the following linear inhomogeneous system,

where X = (21(r,0), x5(r,0), 25(0), 24(0))" is subject to the inhomogeneous boundary condition
Dyz1 Ku(x?) - xl‘r:R)>:| <§(9)>

2.67 o, - _ _

(267 [ (Dv@) =R (Kv(u — T3|r=r) n(6)

Then, a necessary condition for (2.66) to have a solution X subject to (2.67) is that

(2.68) (W;,.’F)—i-/ Uiédo+ | Vindo =0,
o9 o0

where U}, and V¥ are the bulk components of the adjoint eigenfunction Wj;.

Proof. The result follows from a careful application of the Fredholm alternative, where
the inhomogeneous boundary condition is taken into account. We take the inner product with
the adjoint eigenfunction on each side of (2.66) to get

(2‘69) <W;v AcX — 'C(:U’WX» = Ac <W;7X> - <W;7'C(,U/O§X)> = <W;7f> :

Next, by using the definition of the inner product given in (2.14), one can write

(2.70) Wy, L(po; X)) =
T T
/ Ux D, Az — oyx1 dA+/ uy dyAszs — Ky (v3 — 1) + fSxs + fSay o
o \Vr DyAzy — o9 a0 \Un dyAszy — Ky (x4 — 22) + 9423 + goxa

* **

(2.71)
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where (Q is a disk of radius R and Ay = 0, is the 1D Laplace-Beltrami operator, with o = R0
being the arc-length parameterizing the boundary. Next, using Green’s second identity, the
first integral (x) can be rewritten as follows:

T
DMAU; — UUU;; Tl
e [ (i o) ()
T
L - 0 )
1Y) Vi Ky(rg —22) +1 T2 Kv(”:z - V;) '

In addition, the second integral can be treated using Lagrange’s identity and the angular
periodicity of surface bound components:

T
_ [ (dudsu;, = Ky, + fug + ggon\ (@3 AN S
(273) o = /89 <duAsuZ — Ky + fouy + govy, T4 dot o0 \ o0y T2 s

Next, upon adding (2.72) and (2.73), we obtain after some algebra the following expression
involving the adjoint linear operator:

T
N ' B D,AU} — o, U} x1
<Wn7£(N07X)> = /Q (DUAVTZ( _ UUV;) (1:2) dA
T
n duAsuy, — Ky (uy, — Uy) WUy + 9o T3 d
oo \duAtt?, — Ko (vf — V) + four + goor ) \aa) @

+ / (U6 + V) do
o0

=<£*(uo;W2),X>Jr/aQ (U6 + Vi) do

(2.74) = AW5, X) +/ (Ux&+ Viin) do .
o0

The result (2.68) is readily obtained after the substitution of (2.74) back into (2.69). [ ]

Lemma 2.2 (Solvability condition). The imposition of the solvability condition for each of
the three bifurcations leads to the following amplitude equations.
e Hopf bifurcation. A necessary condition for the inhomogeneous system (2.59) and (2.60)
to have a solution X is that the amplitude Ay(T) satisfies the following ODE:
dAy

— 27 RBy(iA1)qo(iA1)ed @hed o 11 Ao = -t 2 (W5, B(Wo, Woono)) Ao

2
+ 2R Fel o ((Bomf))m%f (1 - (T ) pn - qowel%) A,

(2.75)  + (W5, 2B (Wo, Wiigo) + 2B (Wo, Wagoo) + 3C (Wo, Wo, Wo) ) |Ao?Ag .

e Pitchfork bifurcation. A necessary condition for the inhomogeneous system (2.61) and
(2.62) to have a solution Y is that the amplitude A,(T) satisfies the following ODE:

dA,
— 4+ 2(W}, BOW,, Woooo)) An

—%ﬂ&@%@gﬁé%fm%=—w
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R L1 (wyR)Iy, wR
ronred 6ifo, ((Ba0) 2wy (1= oWt oy g 0l ) 4,

+ (W2, 2B Wy, Woor1) + 2B (W—_p, Woo20) + 3C (Wi, W, W—p)) | An|* Ay, .
(2.76)

e Pitchfork-Hopf bifurcation. A necessary condition for the inhomogeneous system (2.59),
(2.61), (2.60), and (2.62) to have solutions X andY is that the amplitudes Ao(T) and A, (T)

satisfy the following system of ODFEs:

. . — dA
— 2 RBy(iAr)qo(idr)es dies poBT 1 Ag = —TTO + 2 (Wpy, BOWVo, Woooo)) Ao

2
+ 2w Rej el do ((Bo(i)\f))zQ?)]; (1 - <m> > e i1 — QO(iAI)eipM1> Ag

+ (W5, 2B (Wo, Wiieo) + 2B (Wo, Waooo) + 3C (Wo, Wo, Wo) ) | 4o|* Ao
+ (W5, 2BWo, Woor1) + 2B(Wy, Wigo1) + 2B(W_n, Wio1o) + 6C(Wo, Wy, W_0)) | An|? Ao
(2.77)

and

dA, .
— 20RB(0)gn (0)€3 $red dn B j1An = == + 2 (W}, BOWn, Wonoo)) An

R In—1(wyR)Ip11(we R
+ 27rR62 ¢n€2 n ((Bn(o))2w12;2 <1 - ((In(civRJS)g )> egﬂl - Qn(o)er{,Ud) An
+ <Wrt7 2B (W’n; WOOII) + 2B (W—n; WOOQO) + 3C (W’n; Wn: W—n)> |An‘2An
+ (W3, 2B(Wa, Wiioo) + 2B (Wo, Worto) + 2B (Wo, Wioto) + 6C (Wo, Wo, Wa) ) |Ao|* 4y, -

(2.78)

In each of these three cases, Wi and W), are adjoint eigenfunctions associated with the adjoint
linear operator. Hence, they satisfy the following relations:

(279) E*<N07 Wa) - _iAIW(;? E*(MO,W;) =0.

Proof. The results stated above are obtained from a direct application of Lemma 2.1. W

The rearrangement of each of the differential equations given in Lemma 2.2 provides
a system of amplitude equations describing the branching behavior in the vicinity of the
bifurcation point, in the limit € — 0. For each of the three bifurcations the amplitude equations
have the following form.
e Hopf bifurcation.

dAy

e G001 A0 + g2100 Ao|* Ao -

(2.80)

e Pitchfork bifurcation.

dA,

P 910t An + goo21|An|* A .

(2.81)
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e Pitchfork-Hopf bifurcation. In this case, one shall analyze a system of two ampli-
tude equations similar to their codimension-one analog. In each equation, the addi-
tional term corresponds to the mixed-mode term (all the other terms remain the same
as for their codimension-one counterpart).

dA

(2.82a) T’TO = giooot1 Ao + ga100] Aol Ao + gro11|An|* Ao
dA

(2.82b) T: = go10t1An + go021 | An|* An + gr110] Ao* Ay -

Explicit expressions for the coefficients of the nonlinear terms in the amplitude equations
are

(2.83a)
g2100 = (W5, 2B (Wo, Wiroo) + 2B (Wo, Waooo) + 3C (Wo, Wo, Wo) ),
(2.83b)
grorr = WG, 2B(Wo, Woor1) + 2B(Wn, Wigo1) + 2B(W—_n, Wio10) + 6C(Wo, Wn, W_p)) ,
(2.83¢)
goo21 = <W;, 2B (Wn, Woon) + 2B (an, W0020) + 3C (Wn, Wh, an» ,
(2.83d)
g1110 = W3, 2B(Wh, Wiioo) + 2B (Wo, Wor1o) + 2B (Wo, Wiowo) + 6C (Wo, Wo, Wa) )

where ¢2100, 91011 € C and gop21, 91110 € R. The coefficients of the linear terms consist of the
projection of the vectors gigoo € C? and gop1o € R? onto the detuning unit vector w1. They
are given by

2
g1000 = QWRegagegQSo (Bo(i)\])qO(i)\[),B + (B()(Z)\[))%)%% (1 — <m> ) 82—q0(i)\1)61>

—T ~
(2.84&) + 47TR¢)6 B (¢0, UOOQQ) o,

shono =25ReF 61 60 (B0, 05+ (B, 0ty (1- DDl o, g o))

(2.84b) + 47R$%" B (¢, too00) @ »

where o0 = [®o(po;0)] ! Eou, appears in the expression for wugogo (see (2.42)). The two
quantities are related to each other by

(2.85) o000 = o000’ fi1 -

In section 4 below, the solution behaviors in the weakly nonlinear regime, as predicted after
the numerical evaluation of the coefficients in the amplitude equations, will be compared with
numerical PDE simulations of the full coupled bulk-surface reaction-diffusion model.

We remark that the generic form for the coefficients of the cubic terms of (2.80)—(2.82) is
well known in the literature. Since the pitchfork bifurcation is simply a Hopf bifurcation with
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a zero-crossing eigenvalue, these coeflicients also arise from the weakly nonlinear analysis of
a codimension-two Hopf—Hopf bifurcation, in which the pair of critical eigenfunctions is fully
complex. We refer the reader to the appendix of [9], where a center manifold reduction was
used to derive a two-dimensional system of amplitude equations at a Hopf—Hopf bifurcation.
We have performed a systematic derivation yielding explicit formulae for the normal form
coefficients for the three distinct bifurcations in our coupled bulk-surface model. This involved
a careful analysis of the underlying spectral problem. These normal form results can be used
for any nonlinear surface reaction kinetics specified on the circular boundary. The bifurca-
tion parameters employed here, being the bulk diffusion coefficient D, and the coupling rate
constant K, are used below to understand the specific role of bulk-surface coupling. In our
derivation above we have allowed for an arbitrary sweep of the two-parameter vector (K, D,)
across linear stability boundaries. Our choice of performing an asymptotic multiple time-scale
analysis, as opposed to a center manifold reduction, was partially motivated by computational
convenience and flexibility. The main advantage of multiscale theory concerns the ease with
which bifurcation parameters can be treated if they appear in the boundary conditions (1.3).
By simply keeping track of the terms at each order within the boundary conditions, the
method of multiple time-scales provides a direct approach to compute the normal form.

3. Bifurcation analysis of amplitude equations. In this section, the equilibria of the
amplitude equations derived in the preceding section are analyzed. Under nondegeneracy
conditions, the stability properties of the steady states in the normal form are preserved in
the full model. Bifurcations of codimension-one and -two are treated separately below.

3.1. Codimension-one: Hopf and pitchfork bifurcations. For a Hopf bifurcation, the
substitution of Ag(7) = po(7)e’(") within (2.80) yields a coupled system of ODEs for the
magnitude pg and the phase 6y, given by

dbo

dpo dbo
dr

dr =[S (91000)] 111 + S (92100) 5 -

(3.1) = [R (g1000)]" 110 + R (g2100) P3 »

When it exists, a steady state pge of (3.1) is given by

R (92100)

where p is a free two-dimensional unit vector. The transversality condition is violated when
1 is tangent to the Hopf stability boundary at pg € R?, for which pg. from (3.2) vanishes.
Consequently, it can easily be argued that the vector R(gi000) is normal to the stability curve
and that a natural choice for the orientation of p; is

= — R(g2100) R(g1000)
1R(g2100)| [[%(g1000) ||

Such a choice provides the maximal magnitude pg. given by

_ |3 (g1000) ||
(34) Poe = \ 1% (g92100) |

(3.3)
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The nontrivial fixed points pge in (3.2) correspond to limit cycle of the complex amplitude
Ap(7). The stability of the limit cycles is given by the sign of the real part of the cubic
term coefficient in (3.1). Hence, one can distinguish between supercritical and subcritical
bifurcations in the usual way:

(3.5) R(g2100) < 0 (Supercritical Hopf), R(g2100) > 0 (Subcritical Hopf).

Next, from substituting pg. into the equation for the phase in (3.1), the steady state phase
90 is

(3.6) 0o(T) = 00(0) + 0o,  with G =[S (g1000)]" £1 + S (92100) PRe »

where 6p(0) € R denotes the phase shift symmetry of periodic solutions.

The following lemma uses the nontrivial steady state from the amplitude equation asso-
ciated with the Hopf bifurcation to give approximate periodic solutions of the full coupled
bulk-surface PDE model in the weakly nonlinear regime.

Lemma 3.1 (Periodic solutions in the weakly nonlinear regime). Let ga100 € C be the cubic
term coefficient in (2.80), and assume that its real part is nonzero, hence excluding degenerate
cases. Then, in the limit € — 0 with € = \/||;t — pol| denoting the square-root of the distance
with the Hopf bifurcation point, a leading-order approximate family of periodic solutions is
given by

(3.7) W(t) = W + £poe |:W06i()\1t+00(0)) +W0€—i(A1t+00(0)):| o) (52)

for any 6p(0) € R and with poe defined by (3.4).
For the surface-bound activator species, let wuqmy denote the amplitude of the bifurcating
limit cycle near the Hopf bifurcation point. A leading-order approximation for ugmy is

T
(38) Uamp = Ogi}i} {’u(t) - ue|} - 281006‘61 d)O’ +0 (52) )

where the period T), satisfies

27
(3.9) T,=5 +0 ().
Finally, the periodic solution in (3.7) is asymptotically stable when R(g2100) < 0 (supercritical
Hopf), and it is unstable for R(g2100) > 0 (subcritical Hopf).

Next, we consider the pitchfork bifurcation. Since the coefficients ggo19 and ggpo1 in (2.81)
are real, we set A, (7) = pp(7)e?"(7) into (2.81) to obtain a decoupled system of ODEs for p,
and 6,, given by

dpn

do
I = g&uompn + 90021,02 ) ==

3.10 — =0.
( ) dr

When they exist, fixed points of (3.10) are

T
(3.11) pre = (| —LO0EL g (1) =0, €R,
90021
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where the constant 6,, accounts for the rotational equivariance of the pattern. The orientation
of the unit vector pp is chosen in a similar way as for the Hopf bifurcation, with the “natural
choice” being

goo21  goo1o

3.12 - ‘
(342 |90021] ||g0010]|

This yields the following expression for pp.:

. ne — .
|goo21]

Again, the pitchfork bifurcation is classified according to the stability of the nontrivial
steady state of the amplitude equation. It readily follows that

(3.14) 90021 < 0 (Supercritical pitchfork), goo21 > 0 (Subcritical pitchfork) .

Finally, this section is concluded with the analog of Lemma 3.1 for Turing-type patterns
arising from pitchfork bifurcations in the full coupled bulk-surface PDE model.

Lemma 3.2 (Spatially inhomogeneous equilibria in the weakly nonlinear regime). Let goo21 €
R be the cubic term coefficient in (2.81), and assume that it is nonzero, hence excluding
degenerate cases. Then, in the limit ¢ — 0 with € = +/||p — pol| denoting the square-root
of the distance from the pitchfork bifurcation point, a leading-order approximate family of
spatially inhomogeneous equilibria is given by

(3.15) W = W+ pne [Wae® + W™ | +0 (),

for any 0,, € R and with pye defined by (3.13).
For the surface-bound activator species, let Ugmp be the amplitude of the bifurcating Turing-
type pattern near the pitchfork bifurcation point. A leading-order approximation for wamp 15

(3.16) Uamp = TAX {[u(8) — ue|} = 2epnele] | + O (7).

Finally, the patterned solution given by (3.15) is asymptotically stable when goo21 < 0
(supercritical pitchfork), and it is unstable for gope1 > 0 (subcritical pitchfork).

3.2. Codimension-two: Pitchfork-Hopf bifurcation. In this subsection, the equilibria of
the coupled amplitude equations (2.82) are analyzed for general values of its coefficients. For
this purpose, it is appropriate to rescale the time variable into the original fast time-scale t¢.
Hence, letting zo(t) = eAg(e%t)et and z,(t) = €A, (e®t) and recalling that p — g = 2p,
the following Poincaré normal form can readily be obtained:

(3.17a) 20 = (iAr + glooo (1t — 10)) 20 + g2100|20|%20 + g1011|2n]*20 »
(3.17b) n = Gaoto( — 110)2n + g1110]20* 20 + Go021| 20| > 20 -
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Since ¢2100, 91011 are complex-valued, while gogo1, g1110 are real-valued, cylindrical polar coor-
dinates are appropriate for this normal form. Letting zg = re'®, z, = w > 0, and p = ug, we
obtain a system of ODEs for the magnitudes w,r and the phase ¢, given by

(3.18)
W = gooz1w® 4+ grirowr?, 7 = R(gro11)w?r + R(goo1)r>, & = A1 + (g2100)72 + S(g1011)w?.

Since the third equation above is decoupled from the others, it need not be considered. The
first two ODEs in (3.18) can then be conveniently written as

(3.19) W = prw® + prawr?, i = porw?r + paar”

where p11 = goo21, P12 = 91110, P21 = R(g1011), and paa = R(g2100). It is assumed that these
coefficients are nonzero and that p11pao — p1opo1 # 0, which is a necessary condition for the
existence of the mixed-mode steady state.

To relate our results with those in [13], we augment (3.19) with linear terms to obtain

(3.20) W = w(d + priw? + p127“2) ) 7 =1(02 + paw? +P22T2) ,

where d; and dy are generic unfolding parameters. This recovers the well-known canonical
truncated system of amplitude equations at a codimension-two pitchfork-Hopf and double-
Hopf bifurcations. We refer the reader to [13] and [17], where the phase portraits of (3.20)
are classified. In the discussion below, the approach and classification from [13] is followed.

We first reduce the number of parameters in (3.20) by setting w = /|p11|w and 7 =
V/|p22|r. After a possible time rescaling if p11 < 0, and further dropping the bars to simplify
the notation, this change of variable yields

(3.21) W = w(d + w? +yr?), 7= r(8y + nuw? + dr?),

where v, 7, and d are given by

P12 _ b2 _ b22 — 41

322 ’}/ = — s 77 = —, —
( ) \P22\ \pn\ !p22!

Depending on the signs of the four quantities d,~,n, and d — 7, it is possible to distinguish
between 12 topologically different stability diagrams in the plane of generic parameters (d1, d2)
(see [13]). In addition to the trivial equilibrium Ey = (0,0), (3.21) possesses up to three
additional steady states. Two of those equilibria are located on the coordinate axes and are
given by

5 5
(3.23) E = (\/—51,0> for 6, <0  and By — (o, \/—d2> for EZ <0,

while the last one corresponds to the mixed-mode equilibrium defined by

o2 —ddy  [ndy — o 762 — ddy 1oy — O2
3.24 Es = , for , > 0.
(3.24) ’ (\/ d—nm \/d—vn d—~n ~d—nn
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Table 1
Classification of steady states of (3.21) and solution correspondence.

Amplitude solution Full model solution
Trivial steady state Ey Base state solution W,
First mode F; Spatially inhomogeneous steady state
Second mode E5 Periodic solution around the base state solution
Mixed-mode Ej3 Oscillations around a patterned solution (breather solution)

With regards to the coupled bulk-surface model, these equilibria have a precise meaning in
terms of oscillatory and patterned solutions. They are classified below in Table 1.

We now summarize the bifurcations arising in the truncated system of amplitude equations
(3.21). Firstly, the single mode equilibria E; and E; bifurcate from the origin on the lines

(3.25) Hy = {(01,62)|01 =0}, Hy = {(01,02)]|62 = 0},

and, respectively, exist for §; < 0 and for d3/d < 0. Next, the mixed-mode equilibrium Fj
bifurcates from each of the single mode equilibria on the semi-infinite pitchfork lines, given
by

(3.26&) A :{(51,(52)‘ ’)/(ngd(sl, 01 > 0 or 7 <0},
(3.26b) ng{(él,ég)\ 5227](51, (51 >0 or (51 <O} s

whose orientations (whether for each case d; is positive or negative) are chosen such that 7}
and T, form the boundaries of the existence region of Es.

Cases for which d = 1 are known to be simple since the truncated system of amplitude
equations (3.21) does not possess any limit cycles. Such a situation corresponds to both
pitchfork and Hopf bifurcations being either subcritical or supercritical, with no fifth-order

terms being needed in the normal form. More intricate cases arise when d = —1 and d—~n > 0,
at which F3 bifurcates through a degenerate Hopf bifurcation on the semi-infinite line given by
d(1 —
(3.27) o= {(51,52) b= s s 00 <o}.
f}/ —

The stability of the bifurcating limit cycle is typically determined by including one fifth-order
term to the normal form. More details on this challenging computation are found in the classic
reference [13].

In the next lemma, an affine transformation mapping parameter spaces is defined.

Lemma 3.3 (Mapping parameter spaces). Let T be an affine transformation in R? that maps
the generic parameter space defined by 61 and do to the original bifurcation parameter space
defined by K, and D,. Then, it must satisfy

™

T(61.62) = po+R (£3 ) [goo10 R(ga000)] R (5 ) @)

(3.28) = po + [R (g) R(gr000) R <—g> 90010} <§;> )
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where g = (Kyo, Dyo)? is the codimension-two bifurcation point and R (i) is the anticlockwise
rotation matriz in the Fuclidean plane defined by

_ (cos(p) —sin(yp)
(3.29) Rip) = <sin(cp) cos(p) ) °
Proof. The proof follows from the fact that ggo1p and R(gi1000) are, respectively, normal
to the pitchfork n = 1 and Hopf n = 0 stability boundaries. |
This subsection concludes with Lemma 3.4, where the mixed-mode solution in the weakly

nonlinear regime is defined. Its stability will be discussed in section 4.2 for two pitchfork-Hopf
bifurcations involving distinct reaction kinetics.

Lemma 3.4 (Mixed-mode solution in the weakly nonlinear regime). Let p11 = goo21, P12 =
91110, P21 = R(g1011), and p22 = R(g2100) be the four cubic term coefficients of system (2.82). If
none of these coefficients vanish, and if paop11 —p1ap21 s nonzero, then in the limit e — 0, with

e = /|lp — wol|| denoting the square-root of the distance with the pitchfork-Hopf bifurcation
point, a leading-order approximate family of spatio-temporal oscillatory solutions is given by

(3.30) W(t)=W.+e¢ (pne [Wnew” + c.c.} + poe [Woei()‘ftwo(o)) + c.c.]) + O (82)

for any 0,,,00(0) € R, as a result of the azimuthal and temporal phase shift symmetries. The
Pair (Pne, Poe) corresponds to the mized-mode equilibrium and is given by

(3.31)

(pnes o) = \/plz [R(g1000)]” 111 — P22 [gooro]” \/p21 [90010)” 111 — P11 [R(g1000)]" 111

P22P11 — P12P21 P22P11 — P12P21

with the detuning vector iy chosen such that p = pg + €2y is within the mized-mode region
of existence. In particular, it can be taken to be parallel to the bisector of this region.

For the surface-bound activator species, let ugmp be the amplitude of the bifurcating spatio-
temporal pattern near the pitchfork-Hopf bifurcation point. A leading-order approximation for
it 1s given by
(3.32) Ugmp = max {|u(f,t) —ue|} = 2¢ (pne|61T¢n| + p06|61T¢0|) +0 (52) .

0<0<2m
0<t<T)

4. Validation of weakly nonlinear theory. In this section we validate the weakly nonlinear
theory developed in section 2 and section 3 by comparing predictions of this theory with
either numerical bifurcation results or full numerical time-dependent PDE solutions. In the
comparisons we will consider both the Schnakenberg (1.5) and Brusselator (1.6) boundary
reaction kinetics. Since the parameter space is large, the bulk domain is restricted to the
unit disk. For the uncoupled case (with K, = K, = 0), the surface diffusion coefficients
and reaction kinetic parameters are chosen to ensure that there is a unique stable patternless
solution for the reaction-diffusion system on the domain boundary. In addition, since typical
surface diffusion coefficients are smaller than their bulk diffusion counterparts in applications,
the condition d,, < D, and d, < D, shall be imposed. Ultimately, the bifurcation analysis
will illustrate how varying the ratio of bulk diffusivity and coupling coefficients can destabilize
the system and lead to novel spatio-temporal dynamics.
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4.1. Codimension-one bifurcation. By numerically computing the roots of the eigenvalue
relation (2.10), we can readily determine a linear stability diagram in the D, versus K
parameter space for the Schnakenberg and Brusselator boundary kinetics. For a circular
harmonic mode with either n = 0, 1, 2, the marginal stability curves in D, versus K, parameter
space, for a fixed set of parameters, are shown in Figures 1 and 2 for the Schnakenberg and
Brusselator kinetics, respectively. In each phase diagram, the region of linear stability is
located to the left of all the curves. Our computations show that the trivial mode n = 0 loses
stability through a Hopf bifurcation, while for the nontrivial modes n = 1, 2, stability is lost
via a Turing bifurcation (zero-crossing eigenvalue).

Some qualitative trends are suggested from these linear stability phase diagrams. Firstly,
when both bulk diffusion coefficients have the same order of magnitude, the Hopf bifurcation

of the trivial mode is the dominant instability. It occurs when the coupling of the inhibitor is

much larger than that of the activator, i.e., K, /K, =~ 102. Secondly, when this ratio decreases

while the ratio D, /D, increases, the primary instability switches to the Turing bifurcation
of the first nontrivial mode (n = 1). This is reminiscent of the classical Turing paradigm for
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Figure 1. Linear stability diagram in the plane of parameters (K, D,) with Schnakenberg reaction kinetics.
Other parameters are R=1, D,, =1, 0, =0, =0.01, K, =0.1, d, =d, = 0.1, a =0.1, b = 0.9. In the right
panel, the symbol “o” indicates supercritical while “+7” indicates subcritical.
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Figure 2. Stability diagram in the plane of parameters (K., Dy) with Brusselator reaction kinetics. Other
parameters are R=1, D, =1, 0y, =0, =0.01, K, =0.1,dy, =d, =0.5,a=3,b="7.5. In the right panel
the symbol “0” indicates supercritical while “4+” indicates subcritical.
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pattern formation, whereby the inhibitor is required to diffuse faster than the activator in
order for a pattern to form.

The redrawn phase diagrams in the right panels of Figures 1 and 2, indicating the local
branching behavior of the bifurcation, was obtained after numerically evaluating the cubic
term coefficients in the normal forms (2.80) and (2.81). For both reaction kinetics, super-
critical Hopf and subcritical Turing bifurcations are predicted to occur as the stability curves
associated with the modes n = 0,1 are crossed. Although the transversal crossing of the right-
most curve associated with the mode n = 2 is predicted to correspond to a supercritical Turing
bifurcation, little attention is given to it in the subsequent discussion since it corresponds to
a secondary instability.

We emphasize that our conclusions only hold for the current set of fixed parameters given
in the captions of Figures 1 and 2. In section 4.1.2 we show that a conclusion of super- or
subcriticality can depend on the specific choices of reaction kinetic parameters and surface
diffusion coeflicients.

4.1.1. Periodic solutions arising from Hopf bifurcations. In this subsection the loss of
stability through the supercritical Hopf bifurcation, as predicted by our weakly nonlinear
analysis in Figures 1 and 2, is investigated. Numerical continuation methods combined with
PDE simulations are used to study the dynamics in the weakly nonlinear regime. As a result
of azimuthal invariance, a simple 1D finite difference method-of-lines approach is used to
spatially discretize the coupled bulk-surface system, with the mean value theorem applied to
derive an ODE for the bulk species at the origin that avoids the singularity inherent to the
Laplacian in polar coordinates. Details of the discretization process are given in Appendix A.

We first study the loss of stability on the vertical line K,, = 5 from Figure 1 that intersects
the n = 0 Hopf curve at D, ~ 2.17. Plots of global periodic solution branches using either
K, or D, as the bifurcation parameter are displayed in Figure 3. These numerical bifurcation
diagrams confirm the prediction of the weakly nonlinear theory of a loss of stability through
a supercritical Hopf bifurcation.

1.2 : : : : : 1.2
115 1.15
=1 =
L 11 F L 14
3] =
2 : =
@' 1.05 | @' 1.05
) - =]
= K ]
= H ] =
2 —_—— = — = = = =4 3 '
1 ]
‘E 0.95 |- g 0.95
= - 2
g =l
i‘, 0.9 r g 0.9
=
085 e 0.85
0.8 . . . . . 0.8 . . . .
1 1.5 2 25 3 3.5 4 45 5 55 6 6.5 7 7.5
Diffusion D, Coupling K,

Figure 3. Global periodic solution branches computed with AUTO [6] past a supercritical Hopf bifurcation
for the Schnakenberg kinetics. The continuation parameter in the left panel is D, with K, = 5, while in the
right panel K, is used with D, =~ 2.17. N = 200 points discretize the radial direction.

Next, in the vicinity of the bifurcation point, (3.8) of Lemma 3.1 is used to predict the
amplitude of the limit cycle. A graphical comparison between this predicted amplitude and



1360 F. PAQUIN-LEFEBVRE, W. NAGATA, AND M. J. WARD

corresponding numerical results computed with AUTO is shown in Figure 4. In the left panel
of Figure 4 a slight shift in the bifurcation point caused by spatial discretization errors is
observed. As the mesh is refined, the gap between the bifurcation points computed from the
spatially discretized system and directly from the transcendental equation (2.10) by solving
for pure imaginary roots is expected to shrink. This shift is not as apparent in the right panel
of Figure 4 since the bulk diffusivity D, was used to locate the Hopf bifurcation point. From
Figure 5, the two branches essentially coincide after translation to the origin.

0.018 T - - T 0.015 T T T T
D
oore | = AUTO —WNA - AUTO —WNA
0.014
0.012 0.01 |
001 =
5 g
= 0.008 | ]
0.006 0.005 -
0.004
0.002
0 . . . . . 0 - - L L
2,172 2174 2.176 2.178 2.18 2.182 2.184 4.998 5 5.002 5.004 5.006 5.008 5.01
Diffusion D,, Coupling K,

Figure 4. Amplitude of periodic solutions in the weakly nonlinear regime for the Schnakenberg reaction
kinetics. The red curve is computed with AUTO using N = 200 equidistant mesh points in the radial direction,
while the black curve is obtained directly from the normal form (3.8) for 0 <e <0.1.
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0.016
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0.004 0.006 0.008 0.01 0 0.002 0.004 0.006 0.008 0.01

Diffusion D, — D, Coupling K, — K

L
0 0.002

Figure 5. Translation to the origin of the branches in Figure 4. The curvature of the bifurcating branches
is correctly approximated by the weakly nonlinear theory.

As a further validation of the weakly nonlinear theory, we now compare the predicted
period of oscillations near the Hopf point with corresponding numerical results extracted from
PDE simulations. As shown in the right panel of Figure 6 for a particular choice of detuning
vector p; normal to the stability boundary (see the left panel of Figure 6), the numerically
computed period of oscillations is T}, ~ 7.65. This value agrees well with the result (3.9) from
the weakly nonlinear theory.

Similar numerical experiments can be performed with the Brusselator reaction kinetics for
the parameter set in the caption of Figure 2. The results are qualitatively similar, with both
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Figure 6. Full numerical simulation of the reduced PDE-ODE model with Schnakenberg kinetics. The right
panel shows the membrane-bound activator u(t) (red curve) which oscillates around the equilibrium solution
(blue line). Notice here the good agreement with the solution in the weakly nonlinear regime (black dashed
coinciding curve). Implicit-explicit time-stepping (SBDEF2) [24] is employed from an initial condition given
by (3.7) with t = 0, 6o(0) = 5, and € = 0.1. The bifurcation point and detuning vector respectively satisfy
po = (5,2.17)7 and 1 = (0.6,0.8)T. The parameter values for the simulation are indicated in the left panel by
a red dot.

the numerical results and the weakly nonlinear analysis predicting a loss of stability through
a supercritical Hopf bifurcation. The periodic solution branches are displayed in Figure 7 for
the membrane-bound activator. Despite the slight shift in the bifurcation point, we observe
a good agreement between the curvature of the branches computed with AUTO and from
the weakly nonlinear theory (3.8). Moreover, at the bifurcation point, the magnitude of the
eigenvalues is larger for the Brusselator than for the Schnakenberg model. This leads to a
smaller oscillation period T}, ~ 2.7719 for the Brusselator. The corresponding full numerical
simulation of the reduced PDE-ODE model is given in Figure 8 for e = 0.1 and p; = (0,1)7.

<-AUTO —WNA

55 T T T T T T 0.1

548 008 '.'AUTO _WNA

1 15 2 25 3 35 4 45 2. 322' 2.324 2.326 2.328 233 2332 2.334 0 0.002 0.004 0.006 0.008 0.01 0.012
Diffusion D, Diffusion D, Diffusion D, — Dy

Figure 7. Periodic solution branches past a supercritical Hopf bifurcation with the Brusselator reaction
kinetics. N = 200 equidistant meshpoints discretize the radial direction for the radially symmetric reduced
PDE-ODE model. Left panel: plot of the norm of the global solution branches computed with AUTO. Middle
and right panels: local branching behavior predicted from the weakly nonlinear theory and from the bifurcation
software AUTO are favorably compared.

As a result of the slight discrepancy between the bifurcation points computed in the
spatially discretized system as compared to the weakly nonlinear theory, it is misleading to
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Figure 8. Full numerical simulation of the reduced PDE-ODE model with Brusselator kinetics. The same
numerical method and initial condition used in Figure 6 are employed here. The parameters are ¢ = 0.1,
po = (5,2.32)7, and p1 = (0,1)T. The red dot in the left panel indicates po + €?p1, where the simulation is
performed.

compare the result of a simulation with the analytical solution at a fixed parameter value.
Therefore, a numerical convergence study as the mesh size h = R/(N — 1) decreases, with N
being the number of nodes used to discretize the radial direction (assuming azimuthal sym-
metry), is provided in Figure 9. Since second-order centered differences are used, a quadratic
rate of convergence is expected. Letting pg""™ and pg™® denote, respectively, the bifurcation
points in the spatially discretized versus continuous systems, we expect that

(4.1) g™ = ™ ll2 < O(h?)

as h tends to zero. This (roughly) quadratic convergence is confirmed in Figure 9 where we
computed the slope ~ of the two curves, characterizing the convergence rates as

(4.2) Schnakenberg (left): v ~ 2.078, Brusselator (right): v ~ 2.008.
102 T . 102
1073 &
= 10° =
- Tl
g . 5
7 10 [75)
107 ¢
107 : : 107 : :
1073 1072 107" 10° 1073 1072 107" 10°
Step size h Step size h

Figure 9. Convergence of numerically computed Hopf bifurcation points Do as the step size decreases for
the Schnakenberg (left panel) and Brusselator (right panel) reaction kinetics with K, = 5 and all the other
parameters being the same as in Figures 1 and 2. Horizontal and vertical axis are displayed in a log scale. The
computation of the bifurcation point in the spatially discretized system is performed with the software coco [4].
The reference bifurcation point is obtained directly by solving the transcendental equation (2.10) for a pair of
purely imaginary roots £iAr and, therefore, is more accurate.
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Next, we illustrate a delayed bifurcation behavior for the onset of oscillations. It is well
known that a slow sweep of a parameter through a Hopf bifurcation point can cause delayed
transitions to oscillatory dynamics in systems of ODEs [1]. In order to observe such a delayed
Hopf bifurcation effect in our PDE setting, the following numerical experiment was performed:
We let K < 1 be a second small parameter and p(t) € R? be a time-dependent vector of
bifurcation parameters such that

(4.3) p(t) = po + (1 — Kt)e ;.

Here, the parameter ¢ does not need to be particularly small because the weakly nonlinear
results from section 2 and section 3 do not apply to time-dependent bifurcation parameters.
Full numerical results of the delayed bifurcation are shown in Figure 10. The initial vector of
bifurcation parameters is p(0) = po — €21, for which the solution decays exponentially. The
“static” bifurcation point is reached when t = k™!, after which the instability region is entered
and sustained oscillations are expected. However, because of the slow parameter sweep, the
transition to oscillations is delayed; an effect clearly observed in Figure 10.

3.8

Diffusion D,

| [=@=Stability boundary
=@=—Parameter path
1.9 | # Delayed transition

4.5 5 55 0 500 1000 1500 2000 2500 3000
Coupling K, Time ¢

Figure 10. Delayed Hopf bifurcation for the Brusselator kinetics with k = 1073, e = 0.5, po = (5,2.32)7,
and p1 = (0.63,0.78)7 (see (4.3)). The left panel shows the path of the time-dependent parameter sweep, with
the initial and final points being in the stability (bottom left) and instability (upper right) regions, respectively.
Numerical results for the membrane-bound activator u(t) are shown in the right panel. The “static” bifurcation
point is reached when t = 1000, but the transition to a periodic solution is delayed. The reduced PDE-ODE
model (because of azimuthal invariance) is discretized using the method of lines. The stiff ODE MATLAB
solver ode23s is used for the numerical time integration.

Next, we show that with Brusselator kinetics, there is a parameter regime where the Hopf
bifurcation switches from supercritical to subcritical. A new linear stability phase diagram
illustrating this transition is shown in Figure 11. For this parameter set, the Hopf locus,
provided by the trivial n = 0 mode (black curve), is the primary instability. The same
parameter values as given in the caption of Figure 2 are used here, with the only difference
being that the Brusselator kinetic parameter b has been increased from b = 7.5 to b = 8.7. For
this parameter set, we conclude that ratios of bulk diffusivity and coupling given by D,,/D,, >
1 and K, /K, = 1 are sufficient for the Hopf bifurcation to be subcritical. Alternatively, when
D,/D, ~ 1 and K,/K, > 1, the Hopf bifurcation is supercritical. This criticality change
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is also shown in Figure 12, where we clearly observe that the real part of the cubic term
coefficient in (2.80) changes sign at some point along the Hopf locus.
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Figure 11. Stability curves associated with the modes n = 0, 1, 2 in the plane of parameters (K., Dy) for
the Brusselator kinetics. Other parameter values are R =1, D, = 1, 0y, = 0, = 0.01, K, = 0.1, dy, = dy =
0.5, a = 3, and b = 8.7. The region of linear stability is located to the left of the n = 0 stability boundary,
which corresponds to a locus of Hopf bifurcations. In the right panel, the symbol “0” indicates a supercritical

bifurcation while “+” indicates a subcritical bifurcation. In the right panel, notice the transition from sub- to
supercriticality along the n = 0 Hopf locus (black curve).
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Figure 12. Transition from a supercritical to a subcritical Hopf bifurcation bifurcation for the Brusselator

kinetics. The plot shows that the real part of the coefficient g2100 in (2.80), when numerically evaluated along
the Hopf stability curve in Figure 11, exhibits a sign change.

To confirm this transition to a subcritical Hopf bifurcation as predicted from our weakly
nonlinear theory, we perform numerical simulations near the intersection point of the Hopf
locus in Figure 11 and the horizontal line D, = 9. The global bifurcating branch computed
with AUTO is shown in the left panel of Figure 13. In the right panel of Figure 13 we plot the
corresponding numerically computed period of oscillations. These numerical results confirm
the predicted loss of stability through a subcritical Hopf bifurcation. The results also suggest
bistability between a large amplitude limit cycle and the steady state solution in a small
parameter window prior to the bifurcation point. From the left panel of Figure 13, the stable
and unstable branches of periodic solution merge at a fold point around K, = 0.8.
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Figure 13. The left panel shows the global bifurcating branch for the membrane-bound activator species.
The right panel shows the numerically computed period as a function of the coupling K, when D, =9 (other
parameters as in the caption of Figure 11). Notice that the initial point matches the linear period predicted
by the asymptotic theory, indicated by a black “z”. The computation is performed with AUTO using N = 200
radial grid points in the bulk.

In Figure 14, we compare the numerically computed amplitude of oscillations against
results from our weakly nonlinear theory for ¢ = 0.025. Despite the slight shift between
the bifurcation points, good agreement is once again obtained. However, we notice that the
range over which the two branches coincide is much more narrow than for their supercritical
counterparts. This is likely due to the real part of the cubic term coefficient in (2.80) having
a rather small magnitude when D, = 9 (see Figure 12), which suggests that the unresolved
quintic term in the normal form may be quantitatively significant.
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Figure 14. Local unstable periodic solution branch past a subcritical Hopf bifurcation for the Brusselator
kinetics with D, = 9 (other parameters as in the caption of Figure 11). The red curve is obtained through
numerical continuation using AUTO, while the black curve is the amplitude wamp as predicted by the weakly
nonlinear theory in (3.8) with ¢ = 2.5 x 1072,

Finally, in Figure 15 we show numerical PDE results of large amplitude relaxation
oscillations that can occur on the horizontal line D, = 9 in Figure 11. These oscillations,
characterized by sharp variations followed by a rest period, are often observed in simpler
ODE models having a subcritical Hopf bifurcation. They are qualitatively distinct from the
harmonic-type oscillations in Figures 6 and 8.
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Figure 15. Highly nonlinear relaxation-type oscillations near a subcritical Hopf bifurcation for the Brus-
selator kinetics. As shown in the upper left panel, the simulation is performed on the horizontal line D, = 9
with € = 0.1. In the upper right panel, the numerically computed spatio-temporal bulk oscillations are plotted
for the activator species U(r,t), with the radius v on the vertical azis and time t on the horizontal azis. The
bottom panel shows the corresponding relaxation oscillations for the membrane-bound activator species. The
initial condition corresponds to the unstable periodic solution in the weakly nonlinear regime as given by (3.7)
with 60(0) = 5,t=0,e=0.1.

4.1.2. Turing patterns arising from pitchfork bifurcations. In this subsection the for-
mation of spatially inhomogeneous steady states close to a pitchfork (or Turing) bifurcation
is investigated numerically. Since there is no azimuthal invariance near such bifurcations,
one cannot use 1D finite differences to spatially discretize the system as in section 4.1.1.
Hence, the full spatial structure of the model must be considered, and its discretization is
done with the finite element method as implemented by the PDE Toolbox of MATLAB [21].
To be more precise, linear triangular elements are used to discretize the bulk domain, while
the 1D Laplace—Beltrami boundary diffusion operators is handled with second-order centered
differences using the nodes attached to the boundary.

As mentioned in [2], the computation of general equilibria to system of elliptic PDEs
posed on arbitrary two-dimensional or three-dimensional domains is a challenging task. For
these domains, the spatial discretization yields large and sparse systems of nonlinear equa-
tions for which traditional software like AUTO [6] and MATCONT |[5] are of limited use. It
is to address these issues that a number of new MATLAB packages such as pde2path [25]
and Computational Continuation Core (cOC0) [4] have emerged in the research community.
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While pde2path has been specifically designed for systems of elliptic PDEs, it cannot handle
nonstandard boundary conditions like those encountered in bulk-surface coupled models. The
base state can be computed using the Equilibrium Point toolbox from coCo, but our attempt
to compute the global bifurcating branch at a pitchfork bifurcation point has been unsuc-
cessful. From a numerical bifurcation analysis perspective, the situation is rather degenerate
since rotational symmetry results in two critical eigenfunctions at the pitchfork bifurcation
point. Consequently, the results exhibited in this section mostly rely on full numerical time-
dependent simulations using Implicit-Explicit time-stepping; an approach that unfortunately
only reveals stable steady states (either patterned or patternless). In practice, the simulation
is stopped when the relative distance between the current and the previous time step becomes
smaller than some given tolerance. More details regarding the spatial discretization and the
numerical methods are given in Appendix A.

First, the loss of stability of the modes n = 1 through subcritical pitchfork bifurcations as
the coupling rate K, increases is investigated numerically. The reader is referred to Figures 1
and 2, where we consider the horizontal line D, = 5 and its intersection with the n =
1 pitchfork curve. In the right panel of Figure 16 the amplitude of the membrane-bound
activator species for the Schnakenberg kinetics is shown. The black curve is the unstable
bifurcating branch and is only valid locally. In theory, the unstable (black) and the stable
(red) branches should merge at a turning (or fold) point near K, ~ 2.7976. Such a feature
cannot be detected with the weakly nonlinear analysis from section 2 or with direct time-
stepping numerical simulations. Instead, numerical continuation methods must be employed.
Having discussed the challenges associated with such a task earlier in this subsection, the
computation of the full branch is an open problem. Nevertheless, the solution in the weakly
nonlinear regime can be used as an initial condition for a direct numerical simulation, with the
anticipation that it evolves to the stable branch. The result of such an experiment is shown
in Figure 17 for ¢ = 0.01.
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Figure 16. Subcritical pitchfork bifurcation with the Schnakenberg kinetics and D, =5 (the other parame-
ters are given in the caption of Figure 1). The left panel is a magnified version of the stability diagram near the
bifurcation point for ¢ = 0.1. The stability region is located to the right of the blue curve, while the red curve
indicates the parameter path. The right panel displays the mazximal amplitude of the membrane-bound activator,
with the black curve obtained from the weakly nonlinear theory (2.81) while the red curve is computed through
successive numerical simulations. The boundary of the circular bulk domain is discretized with N = 200 nodes.
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Figure 17. A numerically computed stable pattern for t ~ 45452 in the vicinity of a subcritical pitchfork
bifurcation under Schnakenberg kinetics. The black dashed curves in the right panel correspond to the unstable
membrane-bound patterns, while the red curves correspond to the stable patterns. The solution in the weakly
nonlinear regime, as given by (3.15) with e = 0.01, n =1, and 0,, = 0, is used as an initial condition. Because
the critical eigenvalues are very small near the bifurcation point, the numerical solution only very slowly reaches
the stable patterned state.

The results of similar experiments using the Brusselator kinetics with D, = 5 (see the
phase diagram in Figure 2) are shown in Figures 18 and 19. Notice here that the unstable
branch goes farther backward than in the Schnakenberg case before reaching a “turning point”
at around K, =~ 2.66. The pitchfork bifurcation point is at K,o ~ 3.02. Again, this is an
example of a hard loss of stability of the base state.
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Figure 18. Subcritical pitchfork bifurcation with the Brusselator kinetics, D, =5, and € = 0.75 (the other
parameters are given in the caption of Figure 2). Again, the unstable branch goes backward, under which the
base state solution is linearly stable. The boundary of the circular bulk domain is discretized with N = 200
nodes.

Despite being unable to compute bifurcating branches using numerical continuation meth-
ods, the package coco (cf. [4]) can be used to estimate the shift in bifurcation points between
the full model and its finite element discretization. In Figure 20 we show the results of such
a convergence study, where hpax is the maximal distance between two nodes on the mesh.
Letting N be the number of equidistant nodes on the circular boundary, then A .y is chosen
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Figure 19. A numerically computed stable pattern at t = 1000 (red curve), near the steady state, as evolved
from the unstable branch near a subcritical pitchfork bifurcation with the Brusselator kinetics and € = 0.1. The
left panel shows the corresponding solution in the bulk.

as hmax = 2rR/N. As hyax tends to zero, the discrepancy between the bifurcation points is
expected to converge like

(4.4) 5™ = 15" |2 < O(hiha) »

for some positive power . Estimating the slope of the curve in the right panel of Figure 20
yields v &~ 1.97. Similar quadratic convergence rate was obtained for bifurcation points of
systems with radial symmetry discretized with simple finite differences (see section 4.1.1).
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Figure 20. Convergence of pitchfork bifurcation points between the continuous versus the spatially dis-
cretized system on the vertical line D, = 5 for the Brusselator kinetics (see the plots in Figure 2). The right
panel plots on a logarithmic scale the distance between the bifurcation points in the discrete versus continuous
systems as hmax tends to zero. The left panel shows the standard Euclidean norm of the base state solution as
the parameter K, increases past the pitchfork bifurcation point when N = 128 nodes are used on the boundary,
yielding a mazximal distance of hmaz ~ 4.9 X 1072,

In a different parameter regime, we now show that under Brusselator kinetics the branching
behavior at the pitchfork point can be supercritical instead of subcritical. For the parameter
set in Figure 21 a new pitchfork bifurcation locus is plotted in the D, versus K, parameter
plane. By numerically evaluating the cubic coefficient of the normal form (2.81), the weakly
nonlinear theory from section 2 now predicts a supercritical pitchfork bifurcation (see the right
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panel of Figure 21). In comparison with the parameter set used for the subcritical case in
Figure 2, we took a slightly different value for b in the Brusselator kinetics, while the surface
diffusion coefficients were increased to d, = d, = 1.
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Figure 21. Left panel: the pitchfork bifurcation (n = 1 mode) curve in the D, versus K, parameter
plane for Brusselator kinetics with a = 3 and b = 5. Other parameter values are R = 1, D, = 1, 0, =
oy = 001, Ky, = 0.1,d, = dy, = 1. The region of linear stability is to the left of the curve. Right panel:
the corresponding coefficient goo21 of the cubic term in the normal form (2.81), along the pitchfork bifurcation
locus. This coefficient is negative, indicating a supercritical pitchfork bifurcation.

To validate the prediction of supercriticality, numerical bifurcation results and full PDE
simulations are undertaken near a bifurcation point on the stability boundary. In the right
panel of Figure 22 the amplitude of the patterned state for the membrane-bound activator
when K, increases on the horizontal line D, = 15 is shown. Here, a rather close agreement
between (2.81) from the weakly nonlinear theory and the numerical bifurcation results is
obtained because the bifurcating branch is stable. Moreover, as predicted by the theory, the
amplitude of the patterned state scales as the square root of the distance from the bifurcation
point. The corresponding stable pattern computed from full PDE simulations with € = 0.1 is
shown in Figure 23 and favorably compared with results from the weakly nonlinear theory.
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Figure 22. Stable bifurcating branch past a supercritical pitchfork bifurcation for the Brusselator kinetics,
with the rightmost point corresponding to € = 0.2. The parameters are as given in Figure 21. The left panel
shows the parameter path past the bifurcation point. The right panel compares womp, as obtained from the
weakly nonlinear theory (2.81), with numerically computed results from PDE simulations.
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Figure 23. Stable pattern mear a supercritical pitchfork bifurcation of the n = 1 mode with ¢ = 0.1,
corresponding to the point indicated by a blue triangle on the bifurcation branch plotted in the right panel of
Figure 22. Left panel: contour plot of the activator concentration in the bulk (U ). Right panel: membrane-bound
patterns. A close agreement between the weakly nonlinear theory predicted by (3.15) (black dashed curve) and
the (nearly coinciding) numerical PDE results (red curve) is obtained. Here the nonzero phase 6, in (3.15) was
calculated from the numerical solution, whose initial condition is a linear combination of the base state solution
with the critical eigenvectors of the Jacobian of the spatially discretized system.

Next, we give a convergence study comparing Wrgys, the numerical solution to the
spatially discretized system, with the leading-order asymptotic solution (3.15) in the weakly
nonlinear regime, and denoted by Wyynya. Such an experiment is only valid when testing
a stable patterned solution arising from a supercritical pitchfork bifurcation. Referring to
Figure 23, the stable pattern for € = 0.1 is repeatedly computed while decreasing hpyax on a
uniform grid. For each hpax value, the error is estimated using the weakly nonlinear asymp-
totic solution as a substitute for the unknown exact solution.

A plot of the error as a function of A,y is shown in Figure 24, where two different solution
measures are employed. Assuming sufficient regularity of the exact solution, and given that
the mesh consists of linear triangular elements, the error is expected to behave like

(4.5) W — WrgnmlLe < O (hkalloghmax|) ,  as  Amax — 0,

using the L> norm (see Remark 4.41 in [12]). For the L? norm, quadratic convergence rate
is expected (see Theorem 4.34 in [12])

(4.6) W = WrgwmllL2 < O(h;,

2 o) s as  hmax — 0.

The plots in Figure 24 confirm the bounds given in (4.5) and (4.6), with the error as measured
with the L norm (right panel) converging slightly faster than expected. The choice of a tem-
poral discretization, along with an associated stopping criteria for the solver, may influence
the convergence of the numerical solution. Although it should not affect the speed of con-
vergence, the error estimates are also biased since we are using the leading-order asymptotic
solution (3.15) as a proxy for the exact solution.
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Figure 24. Convergence of the numerical solution as hmax approaches zero. Left panel: error measured

with the L* norm (red curve) is compared with hZ,... Right panel: the error in the L norm (black curve) is

compared with h2,,.|10g hmax|. The approzimate weakly nonlinear solution is obtained from (3.15) with e = 0.1,
n = 1, and the correct phase 0, (so that the numerical solution matches the solution in the weakly nonlinear
regime).

4.2. Codimension-two bifurcations. As shown in Figures 1 and 2 for the Schnakenberg
and Brusselator kinetics, respectively, the stability curves associated with the Hopf mode
n = 0 and the pitchfork mode n = 1 intersect at a unique codimension-two bifurcation point.
In this subsection, we use the weakly nonlinear theory developed in section 3.2 to explore the
dynamics of the full model in the vicinity of such a point.

Near a codimension-two bifurcation point, a linear approximation of the intersecting sta-
bility curves is obtained by using the leading-order result (2.82) from the weakly nonlinear
analysis. This is done by applying Lemma 3.3 to the generic single-mode stability boundary
defined in (3.25). This yields

2

where £ and 5 are, respectively, tangent to the pitchfork and Hopf stability boundaries.

Next, the cubic term coefficients in (3.20) are evaluated numerically for the Brusselator
and Schnakenberg models. These results are given in Table 2. The dynamics of the truncated
normal form (3.20) are then classified in Table 3 into two distinct cases. In this table, the
reader is referred to (3.22) for the definition of -y, 7, and d.

(4.7) Br=T(H)=po+R (—E) 90010 » Po=T(Hz)=po+R (g) R(g1000) 5

Table 2
Numerical evaluation of the coefficients p;; in the normal form (3.20) for the codimension-two bifurcation
point for the Schnakenberg and Brusselator kinetics. The parameter values are the same as in the caption of
either Figure 1 (Schnakenberg) or Figure 2 (Brusselator).

Schnakenberg | Brusselator
wo | (4.26,3.10)7 | (4.25,3.38)7

P11 0.19096 1.3146
P12 —1.2752 0.87043
P21 —2.3796 —0.52089

D22 —0.48351 —0.162
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Table 3
Two specific pitchfork-Hopf unfoldings (see Table 7.5.2 in [13])

Schnakenberg (case VIII) | Brusselator (case Vla)
d -1 -1
¥ <0 >0
n <0 <0
d—n <0 >0

From Table 3, and based on section 4.2, it follows that the case involving the Schnaken-
berg kinetics is simple, whereas for the Brusselator kinetics the mixed-mode equilibrium Fj
undergoes a Hopf bifurcation that is degenerate in the truncated cubic normal form. In this
more difficult case, it is an open problem to calculate the fifth-order term in the normal form
which, if nonzero, would eliminate this degeneracy.

Parametric portraits for the simple case are given in Figure 25. The four lines Hy, Ho, 11,
and Ty divide the (1, d2) parameter plane into six open regions, for which the corresponding
phase portraits are shown in Figure 26. In region 1, there is a unique unstable equilibrium FEj.
Stability is gained when crossing into region 2, which also generates an unstable equilibrium
E5. When entering region 3 from region 2, a stable equilibrium (FE) bifurcates from the
origin while Fy becomes unstable again and E; remains unstable. From regions 3 to 4, the
mixed-mode equilibrium FEj3 bifurcates from E;. Next, entering region 5 from region 4 causes
FE4 to vanish. When finally crossing the T} line into region 6, the mixed-mode equilibrium
collapses with the single mode equilibrium FEs, causing Fo to lose stability. Moreover, when
it exists in regions 4 and 5, the mixed-mode F3 is a hyperbolic saddle whose stable manifold
forms the boundary between the basin of attraction of the stable equilibrium Fs and some
unknown dynamics with large w amplitude.
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Figure 25. Parametric portraits in the space of generic parameters (01,02) (left panel) and original bifur-
cation parameters (K, Dy) (right panel) for the Schnakenberg kinetics with parameter values as in Figure 1.
In the left panel, the line Hy is the vertical d2-azxis (blue), while the line Hy is the horizontal d1-azis (black).
The semi-infinite lines Ty and Tz, respectively, correspond to the red dashed and full lines. Application of the
map (3.28) to the curves in the left panel yields the curves in the right panel. In particular, the lines H12 are
mapped to 1,2 (see (4.7)), which are tangent to the pitchfork and Hopf stability boundaries.



1374 F. PAQUIN-LEFEBVRE, W. NAGATA, AND M. J. WARD

. @ . © ®

Fr Eq Fy
Ey W ©

W
©
2 E—

Ey W EO(‘ w

Figure 26. Phase diagrams of the coupled system of amplitude equations (3.21) with unfolding of type VIII
(see [13]). The mized-mode equilibrium E3 from panels 4 and 5 is a hyperbolic saddle.

Restoring the angular variable to (3.20), some equilibria must be interpreted differently.
In Figure 26, the phase portraits may be viewed with the r-axis rotating around the w-axis.
Hence, both F5 and E3 now correspond to limit cycles, with their stability properties remaining
the same. The equilibria Fy and E; each remain steady states of the system. The line Ho
becomes a supercritical Hopf bifurcation, H; remains a subcritical pitchfork bifurcation, while
T1 and T5 each remain a mixed-mode bifurcation.

Since for this simple case the nondegeneracy conditions are satisfied, the stability results
associated with the normal form can be interpreted in the context of the bulk-surface PDE
model. The origin Ey becomes the base state (2.3), Fy corresponds to an unstable Turing-
type pattern of the first circular harmonic, and E5 to radially symmetric nonlinear oscillations.
The mixed-mode E3 corresponds to nonlinear oscillations around a spatially inhomogeneous
equilibrium, which is a type of breather solution. When mapped to the parameter space
defined by K, and D,, its area of existence becomes fairly narrow (see regions 4 and 5 in the
right panel of Figure 25). Because the mixed-mode solution possesses the stability property
of a saddle, bistability between a radially symmetric periodic solution and a large amplitude
Turing pattern is expected in this region.

We remark that another equilibrium corresponding to a stable Turing pattern state must
also exist because of the dissipative nature of the system, which prevents the solution from
becoming unbounded. In section 4.1, numerical evidence for the existence of such a large
amplitude stable Turing pattern near a subcritical pitchfork bifurcation was shown for both
the Schnakenberg and Brusselator kinetics.
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Although it is expected to be unstable, a numerical simulation starting very near the
mixed-mode solution should stay near it for some time before drifting away exponentially.
PDE simulation results are presented in Figure 27 for parameter values taken in region 5 and
with the initial condition corresponding to E3. Good agreement between the weakly nonlinear
and numerically computed mixed-mode PDE membrane-bound patterns is shown in the left
panel of Figure 28. This agreement is expected for early simulation time. In the right panel
of Figure 28, we observe that the difference between the PDE numerical solution and the
asymptotic mixed-mode solution in the weakly nonlinear regime grows in time.
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Figure 27. Interaction of a supercritical Hopf and subcritical pitchfork bifurcations for the Schnakenberg
kinetics. The simulation corresponds to region 5 (left panel). Right panel: a space-time contour plot of the
membrane-bound activator species u(6,t), showing oscillations around a spatial pattern. Equation (3.30) with
e =0.1, n =1, and phases 0y(0) = 0,, = 0 is used as an initial condition.
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Figure 28. Same simulation as in Figure 27. Left panel: membrane-bound PDE numerically computed
solution (red curve) and the nearly coinciding weakly nonlinear solution (black dashed curve) at time t = 100.
Right panel: difference between these two solutions plotted versus time using the L? norm.

As time increases, our full numerical results show a transition toward a spatially homoge-
neous periodic solution. However, in this parameter region, bistability is expected and a dif-
ferent initial condition may lead, instead, to a spatially inhomogeneous equilibrium. Figure 29
presents two simulation outcomes performed in region 5, where different initial conditions have
led to either a spatially homogeneous periodic solution or a stable Turing pattern.
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Figure 29. Bistability between a spatially homogeneous periodic solution (left panel) and a stable Turing
pattern (right panel) for the Schnakenberg kinetics, with bifurcation parameters taken from region 5 with e = 0.1.
Left panel: the initial condition is the mized-mode solution in the weakly nonlinear regime, with the space-time
contour plot showing the long-time oscillatory dynamics of the simulation in the right panel of Figure 27.
Right panel: the initial condition is the base state solution slightly perturbed with the critical eigenvectors of

the Jacobian of the spatially discretized system. Notice here that the oscillations become extinguished as time
mcereases.

Next, we discuss the more intricate case that results from the Brusselator kinetics (see
Table 3). Parametric portraits are given in Figure 30, with corresponding phase diagrams
provided in Figure 31. The regions 1, 2, 3, and 7 yield the same phase diagrams as for the
simple case analyzed above. Here, region 7 of Figure 30 corresponds to region 6 of Figure 25.
When crossing the line 77 from regions 3 to 4, E3 bifurcates from Fs, with Es losing stability.
In region 4, E3 is a stable focus while Fy, Fi, and FE» are all unstable. On the line C,
the equilibrium FE3 undergoes a Hopf bifurcation within the truncated system of amplitude
equations (3.21). Because only cubic terms are included, the bifurcation is degenerate and the
family of limit cycles persist only on the line itself. Also, for this threshold value there is a
heteroclinic connection between the two single mode equilibria. In region 5, the four equilibria
are unstable. Finally, between regions 5 and 7, the successive crossing of the lines 75 and H»
causes the mixed-mode equilibrium to collapse on Ej, after which E; collapses at the origin.
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Figure 30. Parametric portraits in the space of generic parameters (01,02) (left panel) and original bifur-
cation parameters (K., Dy) (right panel) with Brusselator kinetics. The lines H1,2 and Th2 are described in
the caption of Figure 25, with the additional line C' (3.27) in cyan color in the left panel. Applying the affine
transformation defined in Lemma 3.3 yields the plot in the right panel.
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Figure 31. Phase diagrams of the truncated system of amplitude equations (3.21) with unfolding of type
Vla (see Figure 7.5.5 of [13]). The phase diagram corresponding to the line C' in Figure 30 is structurally
unstable, i.e., the retention of generic higher-order terms will remove the degeneracy of the Hopf bifurcation
and introduce a heteroclinic orbit (see [13] and [17] for more details).

Restoring the angular variable to the truncated system of amplitude equations, we expect
torus (Neimarck—Sacker) bifurcations for parameter values on a curve tangent to C' and an
exponentially thin (as (d1,d2) — 0) region of parameters near C' corresponding to some kind of
chaotic behavior (see [17] and [27]). The possibility of such intricate dynamics is interesting,
but it seems likely to be confined to an extremely small region of parameter space that would
be virtually undetectable in PDE simulations.

In order to remove the degeneracy of the Hopf bifurcation, higher-order terms should
be added to the normal form. Since this challenging computation, starting from our coupled
bulk-surface PDE model, is left as an open problem, some bifurcation results from regions 4, 5,
and on the line C' in Figure 30 cannot be transferred to the original system. It is nevertheless
possible to investigate numerically the breather-type solutions within this narrow parameter
regime (when considering the space defined by the original bifurcation parameters). Figure 32
shows simulation results for short times, and for parameter values taken in region 5, where
the mixed-mode solution is expected to be unstable.

The right panel of Figure 33 shows that the distance between the numerical solution
and the solution in the weakly nonlinear regime grows over time. However, in contrast to
the previous case with the Schnakenberg kinetics, the long time integration in Figure 34
clearly reveals a transition towards a spatially inhomogeneous steady state and the absence
of bistability with the spatially homogeneous periodic solution. This is consistent with the
phase diagram for parameters in region 5 in Figures 30 and 31.
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Figure 32. Interaction of a supercritical Hopf and subcritical pitchfork bifurcations for Brusselator kinetics
with e = 0.1. The simulation corresponds to region 5 (see left panel). Right panel: a space-time contour plot
of the membrane-bound activator species u(f,t), which exhibits oscillations around some spatial pattern. The
initial condition is the mized-mode solution in the weakly nonlinear regime.
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Figure 33. Same simulation as in Figure 32 for the Brusselator kinetics, with ¢ = 0.1. Left panel:
the membrane-bound numerical (red curve) and the nearly coinciding weakly nonlinear (black dashed curve)
solutions at time t = 50. Right panel: difference between these two solutions plotted over time using the L?
norm.

Finally, we remark that when applied to systems of PDEs, the normal form analysis of
codimension-two bifurcations must be interpreted with care, especially when degenerate local
bifurcations occur in the system of amplitude equations [28]. Moreover, the parameter regime
and phase space ranges where the conclusions hold can be fairly narrow, making it very
difficult for PDE direct numerical simulations to reproduce delicate dynamical behaviors that
occur in the ODE amplitude equations.

5. Global dynamics via full numerics: Rotating waves. In this section, full numerical
simulations are used to briefly explore novel dynamical behaviors in the highly nonlinear
regime, away from bifurcation points, that are due to the bulk-surface coupling. For the
Brusselator reaction kinetics, we study the formation of rotating waves and show that they
arise when a nontrivial spatial mode undergoes a Hopf bifurcation. Allowing for different
adsorption and desorption rates for each species seems to be a key condition behind the
formation of such waves.
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Figure 34. Transition between the mized-mode solution and a stable Turing pattern for the Brusselator
kinetics for bifurcation parameters taken from region 5 of Figure 31 with € = 0.1. Left panel: a space-time
contour plot. Right panel: plot of the L? norm of the numerical solution. The nitial transient has been
removed for both plots.

We consider here a modified coupled bulk-surface model for which the rates of adsorption
and desorption are different for each species. Let r, and p, be the activator and inhibitor
rates of adsorption. Similarly, let r4 and p; be the desorption rates. Then, the boundary
conditions in (1.3) are reformulated as

(51) DuarU|r:R =Trqu — raU|7":R 5 D’Ua’I‘V|T‘ZR = Ppqv — paV|r=R .

Similar boundary conditions are considered in [18] and [20]. These new boundary conditions
modify the dynamics on the surface, so that (1.4) is replaced by

(5.2)

dy, dy
Ou = ﬁaeou —rqu+rUlr=p + f(u,v), O = ﬁaﬁf)” —pav +paVlr=r + g(u,v) .

After calculating the radially symmetric base state for this modified bulk-surface model, a
linear stability analysis readily provides a transcendental equation for the growth rate A\ as-
sociated with the circular harmonic of mode n. In place of (2.10), the growth rates are roots
of F,,(\) =0, where

(5.3)

o= [ . rd n?d, \ . Pd n2d, e e

n( )_ _fu+ 7o In(QuR) + R2 _gv+ 1 paln(QR) + R2 — JoYu -
DyQu I (20 R) Dy I (QR)

Following a remark from [18] on the conditions underlying the emergence of traveling
waves, we restrict the parameter space by setting the diffusion coefficients to be equal for
both species. More specifically, the following set of parameters is considered:

(5.4)
R=1, Dy=D,=1, 04,=0,=0.5, dy=dy=0.5, ra=0.1, r4=1, pa=1, pg=0.1, a=3.
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By allowing the Brusselator kinetic parameter b in (1.6) to be free in (5.3), in Figure 35 we
show numerically that the system undergoes a series of Hopf bifurcations, each of which is
associated with a spatial mode n. Notice in the left panel of Figure 35 that the trivial mode

is the first to lose stability. Hence, we expect the waves to coexist with radially symmetric
oscillations in the fully nonlinear regime.

N

p——
-1 —), = | -
—), = 2
1.5 B
R(A) =0
» ‘ ‘ ‘ ‘ ‘ ‘ ‘ o5 ‘ ‘ ‘ ‘ ‘ ‘ ‘
6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

Figure 35. Real (left panel) and imaginary (right panel) parts of the most unstable eigenvalues, computed
from (5.3), for the mode n =0, 1, 2 as the kinetic parameter b increases. The parameters are given in (5.4).

For b = 8, full PDE numerical computations of this modified bulk-surface model re-
veal three distinct types of temporally oscillatory solutions depending on the initial data. A
clockwise rotating wave is shown in Figure 36, an anticlockwise rotating wave is shown in
Figure 37, and finally a radially symmetric oscillatory solution is shown in Figure 38. For
each case, appropriate initial conditions favoring a particular mode have led to the desired
dynamics. We have also tried to compute a standing wave by stimulating the modes n = 41,
but our numerical results suggest such a solution to be unstable.
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Figure 36. Clockwise rotating waves for the Brusselator kinetics (1.6) with b = 8 and for the parameter set
(5.4). The initial condition corresponds to a perturbation of the base state solution favoring the mode n = 1.
The left panel shows a space-time contour plot of the membrane-bound activator species. In the right panel, the
L? norm of the solution converges to some equilibrium values after an initial oscillatory transient.
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Figure 37. Anticlockwise rotating waves with the Brusselator kinetics (1.6) and the same parameter values
as in Figure 36. The initial condition corresponds to a perturbation of the base state solution favoring the mode
n = —1. The left panel shows a space-time contour plot of the membrane-bound activator species. In the right
panel, we see the L norm of the solution converging to some equilibrium values in a similar fashion as for the
clockwise waves.

23

22 - B

21 ,

n
=}
T

©
T

Angle 0

[Wreal|z2
®

.
0 10 20 30 40 50 0 10

Time ¢ Time ¢t

Figure 38. Radially symmetric oscillations with the Brusselator kinetics and the same parameter values
as in Figures 36-37. The initial condition corresponds to a perturbation of the base state solution favoring the
trivial mode (n = 0). The left panel shows a space-time contour plot of the membrane-bound activator species,
which clearly exhibits spatially uniform oscillations. In the right panel, the solution in L? norm undergoes
sustained oscillations.

These numerical results give only a glimpse of novel global solution structures for coupled
bulk-surface models that can occur away from bifurcation points. A rigorous analysis of the
existence of such rotating traveling waves, including a precise determination of the parameter
space involving the adsorption and desorption rates where they occur, is beyond the scope of
this paper.

6. Discussion. On a two-dimensional circular domain, we have introduced and analyzed
a class of coupled bulk-surface reaction-diffusion models for which a passive diffusion process
occurring in the interior bulk domain is linearly coupled to a nonlinear reaction-diffusion
process on the domain boundary. In section 2, a multiple time-scale approach was employed
to systematically derive amplitude equations near three different instabilities: the Hopf, the
pitchfork (or Turing), and the pitchfork-Hopf bifurcations. An interesting feature of our
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development of the weakly nonlinear theory of pattern formation for coupled bulk-surface
PDE models was the analysis of the spectral problem for the linearization, which involved the
eigenvalue parameter appearing in the boundary conditions. In section 3, we used the normal
form equations to determine the stability of bifurcating branches in the weakly nonlinear
regime. The theory was illustrated using the classical Schnakenberg and Brusselator kinetics
in section 4, where good agreement between numerical and analytical solutions was observed.
Our hybrid analytical-numerical approach has shown that the linear coupling of a diffusive bulk
to an active membrane can lead to either oscillatory dynamics or pattern formation. Finally,
the formation of rotating waves is explored through numerical simulations in section 5.

Several open problems related to coupled bulk-surface reaction-diffusion systems warrant
further investigation. One challenge concerns the computation of global bifurcating branches,
a task amenable to numerical bifurcation analysis. The classical software AUTO [6] has been
successfully applied to the reduced 1D radially symmetric model with angular invariance (in
the context of Hopf bifurcations), but it cannot handle implicit systems of differential equations
such as those obtained after discretizing the full two-dimensional model using finite elements
(see Appendix A for details). A promising alternative to AUTO that has been explored is the
software package coco (cf. [4]). The Equilibrium Point toolbox from cOCO, combined with
the PDE toolbox from MATLAB [21], has been used to compute base state solution families
of the full model. Successive mesh refinement has revealed quadratic convergence between
the bifurcation points predicted by the weakly nonlinear theory and as detected by coco.
However, because of rotational symmetries, we have been unable to numerically branch off
at a pitchfork bifurcation point. These bifurcations are characterized by the crossing of two
nearly identical eigenvalues (spatial discretization causes some loss of symmetry) through the
origin, and thus there are two critical eigenvectors at the branch point. Further work in this
direction is needed in order to numerically resolve the bifurcating branch arising from this
rather degenerate bifurcation point.

The weakly nonlinear analysis carried out in this work has revealed a rich bifurcation struc-
ture consisting of both subcritical and supercritical codimension-one bifurcations, as well as
codimension-two pitchfork-Hopf bifurcations. On two occasions, the cubic normal forms de-
rived in section 2 were not sufficient to capture the dynamical behavior of the original system
up to topological equivalence. The first situation, discussed in section 4.1.1 for the Brusselator
membrane kinetics, concerns the transition from a supercritical to a subcritical Hopf bifurca-
tion. There, parameter values at which the bifurcation becomes a degenerate Hopf (Bautin)
bifurcation were found. For the same kinetics, the classification of codimension-two bifurca-
tions in section 4.2 has also revealed some degeneracy in the phase portraits of the truncated
system of amplitude equations, which resulted from the mixed-mode equilibrium undergoing
a Hopf bifurcation. For those two cases, the computation of an additional (nonzero) term is
needed to fully resolve the degeneracy in the normal forms. Further details on this lengthy
computation for simpler ODE models can be found in [17] and [13].

Through numerical simulations, our work has revealed the existence of clockwise and
anticlockwise rotating waves coexisting with radially symmetric oscillations. Hence, an open
question amenable to a more rigorous PDE theory approach consists of proving the existence
and the stability of the waves. Key to this problem is the appropriate reformulation of the
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model into a moving coordinate frame. Also, it would be worthwhile to precisely delineate
the region in the adsorption-desorption parameter space where rotating traveling waves can
occur.

With their confined geometry, and because of the clear distinction between the dynamics
in the domain and on its boundary, coupled bulk-surface reaction-diffusion models are ideal
for investigating intracellular pattern-forming systems. For instance, a bulk-surface model for
the spatio-temporal Min protein patterning within E. Coli was formulated in [15] in a two-
dimensional elliptical geometry. To our knowledge, prior studies are often limited to linear
stability analysis and full numerical simulations (cf. [18], [20]). An open problem is to extend
the weakly nonlinear theory developed in section 2 to some biologically relevant bulk-surface
models in more general classes of domains (cylinders, spheres, ellipses).

Appendix A. Numerical methods.

In this appendix, the various numerical techniques employed in this paper are briefly
explained. We first focus on the finite differences discretization of the model with radial
symmetry. Then, we present the finite element discretization of the full bulk-surface reaction-
diffusion system. Finally, the specific Implicit-Explicit time-stepping method used for most
numerical simulations is discussed.

A.1l. Finite differences for the radially symmetric case. Assuming angular invariance of
the coupled bulk-surface system, (1.2) and (1.4) become

D D
(A1) 6—U: ua<aU>—auU, 8V: ”a<av>—avV, 0<r<R,

ot  r or \' or ot~ r o \or
du dv
(A.2) i —Ky(u—Ul=r) + f(u,v), i —K, (v—=V]=gr) + g(u,v).

The coupling between the PDEs in the bulk and the ODEs on the boundary occurs through
the same linear Robin-type boundary conditions as given in (1.3).

We let h = R/(N — 1) be the step size, where N is the number of mesh points. We
then approximate U;(t) =~ U(h(j — 1),t) and Vj(t) = V(h(j — 1),t), for j =1,..., N. Next,
employing the method of lines yields the following system of ODEs for the vector W =
(Ur,...,Un, Vi, ..., Vo, u,v)T € R2N+2;

(A.3) W =AW + F(W).

Here, A € RGN+2)x(2N+2) ig the block diagonal matrix defined by

DL — 0,1 — Ku(7 + %)enek 0 0
(A.4) A= 0 DL — o, — K,(2 + §)eneky O],
O O O
where T € RY* is the identity matrix, ey = (0,...,1)T € RY and each instance of O is an

appropriate matrix of zeros. Also, L € RY*N corresponds to the discrete radially symmetric
Laplacian, defined by
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—4 4 0 0

, 3 -2 3 0

(A.5) L=o5| - :
. kﬁ -2 1*%

0 ... 0 2 —2

Finally, the nonlinear function F(W) : R2V+2 — R2NV+2 ig defined by

K, ( —i—%) uen
Kv( -f—%) ven
—Ky (u UN) + f(U'?U)
— Ky (U - VN) +g(u, U)

oo

(A.6) F(W) =

A.2. Finite element discretization. Let () be the two-dimensional circular bulk domain
of radius R. In order to derive the weak formulation for (1.2) at each ¢t > 0, we multiply it by
¢ € H'(Q) and integrate by parts using the boundary conditions (1.3). This yields that

(A.7a) /ngt:Ku ¢(u—U)—Du/QV¢>~VU—au/Q¢U for all ¢ € H'(€),

o0N

(A.7b) /(th—Kv ¢(U—V)—DU/V¢-VV—JH/¢V for aH(;SEHl(Q).
Q 0N Q Q
We then define an appropriate mesh on (). First, we can parametrize the boundary 92
by the arc-length as

(A.8) 00 ={X(0) e R*|0< 0 <2rR} .

For simplicity, the nodes on the boundary are chosen to be evenly spaced by an arc-length
step size of do = 2rR/N, where N is the number of nodes on the boundary. Let Ny denote
the total number of mesh points in €2, which includes those on the boundary. A partition can
then be defined as follows:

(A.9)

Ap.. ={z;i=X((i—Ddo)|i=1,..., N}U{z;|||lzi|| <Rfori=N+1,..., Neotar} ,

max

where hpmax is the maximal distance between two adjacent nodes, defined by

(A.10) hmax = max Ilnin |z — x|

In Figure 39, we plot two different meshes approximating the unit disk given N = 200
boundary nodes.

Now, let Sy, (2) be the space of piecewise linear functions defined on the mesh Ay,
and define a basis {¢;} such that any element Uy, . € Sp,.. (£2) can be uniquely written as

Niotat

(A.11) U =, Ui(@) ().
=1



PATT FORM AND OSC DYN IN 2D COUPLED BULK-SURF RDS 1385

os| IR |
' SOOI ISR
oot OCREE IS,
0.2 [ ‘ﬂ‘hh‘hﬁﬁmhw«
A’VVA‘VA <> 4’ AVAVAA v’?
L oo
QVAVA AVAE
ou LTRSS 4“‘4&‘:4224‘!4;5 ]
PO
""‘E%:%sf VA»Aqtig%u
-1 YaTAVAa

4 05 0 05 1 T 05 0 05 1

Figure 39. Two different meshes approzimating the unit disk for N = 200, obtained with the PDE Toolbox
of MATLAB [21]. In the left panel, the mesh is finer near the boundary than in the center of the bulk domain.
In contrast, in the right panel, we have set hmax = do.

Hence, the weak formulation (A.7) is approximated as

(A.12a) /@Ut:Ku/ qﬁi(u—U)—Du/ngi-VU—au/@U fori=1,..., Niotal
Q o0 Q Q

(A.12b) /qbz-V;=KU/ @(v—V)—Dv/ngi-VV—UU/qbiV fori=1,..., Ntal-
Q o0 Q Q

Assuming that the first basis functions ¢;(x) for i = 1,..., N form a piecewise linear basis for

the polygonal approximation of the boundary, we can approximate the bulk U, V and surface
u, v concentrations by

Niotal Niotal
(A.13) Uhmax = Z Ui(t)0i(®);  Vigpay = Z Vi(t)gi(z)
=1 i=1

N N
i=1 =1

Then, substituting (A.13) into (A.12) we obtain the following linear system of ODEs,

(A.14a) MU = — (K,Q+ D,K 4 ¢,M) U + K,QB u,
(A.14b) MV = — (K,Q + D,K + o,M) V + K,QB v,

where the vectors U, V' & RMNtotal and u, v € RY are defined by

Ui(t) Vi(t) uy(t) v1(t)
(A15) U = V = u = , V=

UNtotal (t) VNtotal (t) UN(t) UN.(t)
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and the matrices M, K, and Q, all in RNtwotatXNiotal - are

(A.16)
M :/¢i¢ja K. ; :/Véiv@', Qi,; :/ i0; i,7=1,..., Niotai -
Q Q o9

Finally, the rectangular matrix B € RV*Ntotat is defined by
(A17) B = []INXN|©NX(Ntotal_N)] ’

where Iy is the identity matrix and Oy (n;,,,,,—n) is the appropriate matrix of zeros.
Simple finite differences are used to approximate the reaction-diffusion process on the
boundary. Using the same notation, (1.4) is approximated by

(A.18)
N N
w=d,Dou— K, (u—BU)+ > flu,vi)ei,  b=dDov— K, (v—BV)+ > glus,vie;,
i=1 =1
where the vectors e; for i = 1,..., N form the standard Euclidean basis in RY. Also, Dy €
RN*N 5 the discrete 1D Laplacian with periodic boundary conditions, defined as
-2 1 0 ... 1
. 1 -2 1 0
A.19 Dy = -
( ) 2 (dO')2 .
1 -2 1
1 0o 1 =2

Now, let W (t) € R2Ntotart2N he the time-dependent solution of the spatially discretized
bulk-surface system, defined as

(A.20) W =

¢ & <C

Combining the equations in (A.14) with (A.18), we obtain an implicit system of differential
equations for W, given by

(A.21) CW = AW + F(W),
where C, A € RZNtwotar+2N)x(2Nto1a1+2N) gre block diagonal matrices defined by

M O O O

c_lom o o
O O Inxy O ’
A 0 0 O Iyewn
— (KuQ + DK + M) 0 0O O
A= @) - (KUQ+DUK+UUM) @) (©)
O O d,D; O |’
O O O d,Dy
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where once again each instance of Q is an appropriate matrix of zeros. Finally, the nonlinear
terms in (A.21) are defined as

K, QBT

K,QB"v
—Ky(u—BU) + Eﬁ\; fug,vi)e;
—K, (v —BV) + 3N, g(ui,v)e;

(A.23) F(W) =

We conclude this appendix with the definition of two different solution measures used in
this paper. First, we define the infinity norm as

(4.24) W= _max |,

1=1,...;,Ntotal

where the set {e;} forms the standard Euclidean basis in R2Ntotart2N  Then, we can approxi-
mate the L?(W) norm using quadratures as

(A.25) [Wl2om) = VWIEW .

where C is a mass matrix, defined in terms of M (see (A.16)), by

4 1 0 1
Igﬁ g g ; 1 4 1 0
- . o
(A26) C= O O Myyy O ,  with MNXN—F : :
0O O 0 My v 0o ... 1 4 1
1 ... 0 1 4

A.3. Implicit-Explicit time-stepping. Two different Implicit-Explicit time-stepping sch-
emes have been used in our PDE numerical simulations: 1-SBDF and 2-SBDF, where the
acronym SBDF stands for semi-implicit backward difference formula [24]. The single-step
method 1-SBDF is employed to obtain the appropriate initial condition for the multistep
method 2-SBDF. When applied to the system (A.21), the two methods yield

(A.27) 1-SBDF : (C — AtA)W"™™! = CW™ + AtF(W™),
(A.28) 2-SBDF : (3C — 2AtA)W™ ! = 4CW™ + 4AtF(W™) — CW"™ 1 — 2AtF(W™ 1)

where At is the time step and W ~ W (nAt) is the approximate solution. Hence, given an
initial condition W9, we can compute the solution at the next time step W' using 1-SBDF,
after which both W9 and W' are used as initial conditions in 2-SBDF.

The same time-stepping can also be applied to the spatially discretized radially symmetric
system (A.3), where one simply needs to replace the matrix C with the appropriate identity
matrix.

Finally, we remark that the time step At used in our simulations never exceeded 1072,

Appendix B. Nondimensionalization.
We derive here the dimensionless coupled bulk-surface reaction-diffusion system defined
in (1.2)—(1.4). Let us first consider an arbitrary two-dimensional bounded bulk domain ),
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along with its 1D boundary 0€Q¢. If U(§,T) and V(§,T) denote the bulk variables undergoing
diffusion and linear decay, then they must satisfy

ou %
B.1 — = Dy AU — — = DyAY — Q T .
(B.1) a7 = DulU —oll, =5 =DyAV—oyV,  £€Qe, T>0
Here Dy and Dy are bulk diffusion coefficients, while o;; and oy are constant decay rates.
Next, (B.1) is supplemented with linear Robin-type boundary conditions given by

(B.Q) Du(angz/{) = Ku— Ky, DV(&%V) = K,o — KyV, £ e 395,

where n¢ is the outward normal unit vector to the domain €¢ while u, b are membrane-bound
variables. The four coupling parameters K, , Ky , K7, and Ky in (B.2) model local exchanges
between membrane-bound and bulk variables. On the boundary 0%, the dynamics of u(¢,7T")
and v(&,T) are governed by a system of reaction-diffusion equations of the form

ou w . (Lu Lo

(BS) 87 = duAsu — Kuu + KL[U + ’}/uzf <M, Iu) s § S 895,
Ov Lu Lv
aiT:dDASU_KUU_FKVV_}'VU%g <’) ) 568955

where d,, and d, are surface diffusion coefficients, while f(-,-) and g¢(-,-) are arbitrary dimen-
sionless nonlinear reaction kinetics. Here, u, L, v,, and 7, are, respectively, typical mass,
dimension and time-scale measures, needed for the units to balance in each equation.

Next, we explicitly state the units of the variables,

B4) ] fengthl, [T): el (o] o )
and the units of the parameters,

(L] : [length], [u] : [mass], Ku Ko : [mlne], Kyl (K] - Uﬁi}]‘],
(B.5) o

Du [v] ][]+ S o] o] b o

In this way, new dimensionless variables can be defined as

L? L? t
t =T, xzé, U(azjt):Z/{<Lx,t> , V(x,t)zV(La:,) ,
L Y Vu jz Yu

L t L t
u(z,t) = —u (Lx, ) , vz, t)=—0v (Lx, ) i
2 Tu 2 Tu

We remark that the scaled bulk domain, denoted as €2, has a typical dimension of O(1). For
the case of a disk, the typical dimension corresponds to the radius.

Upon substituting the variables defined in (B.6) within the system defined by (B.1), (B.2)
and (B.3), we readily obtain a dimensionless coupled bulk-surface reaction-diffusion system
given by

(B.6)
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(B.7)
ou ov
— =D,AU —o,U, —=D,AV —0c,V, 2€Q;, t>0,
ot ot
Dy (0,,U) =rqu —1r U,  Dy(0n,V)=pgv—psV, x€dQ,,
ou ov
E = duAsU*Tdu+7‘aU+f(ua U)a E = dyAgv *pdv+pav+’}/g(U,U), x € 08y,
where the new dimensionless parameters are each defined as
Dy Dy, dy dy ou ay
D, = D, = dy = = — = =
(B 8) u Lz/_Yu b v LQ’Yu 9 u L2’yu 9 v sz}/u ) u ’)/u 9 UU u 9
. _ Ky _ Ky _ K, _ Ky _ o
Ta=—"5 Ta= y Pd=—"5 DPa= y Y=
Tu Ly, Tu Ly Yu

Our first assumption is that the time scales of the nonlinear reaction kinetics are the same,
which yields v = 1. Next, to reduce the size of the parameter space, we will assume equal
adsorption and desorption rates for each variable. Letting K, and K, be new coupling rate
constants, defined as

(B.Q) Ky=ro=r1rq9, Ky=ps=0pq,

we obtain the dimensionless coupled bulk-surface reaction-diffusion system given in section 1.
In terms of the parameters of (B.1)—(B.3), we are assuming by (B.9) that

K K
- 7“7 KU = l
L L
However in section 5, we relax assumption (B.9) and allow for distinct adsorption and des-
orption rates in order to explore the formation of rotating waves in a circular bulk domain.
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