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ABsTRACT: This study analyzes extinction patterns for two species
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20-yr period. One species, Argiope argentata, has large populations
sometimes crashing quickly to extinction and a much weaker relation
of extinction likelihood to population size than does the other species,
Metepeira datona. Demographic models were built for both species
and matched against observations. Differences between the species
in life-history traits—estimated with measurements from the field—
together with incorporation of demographic stochasticity, a popu-
lation ceiling, and environmental stochasticity, were necessary to fit
the observed extinction curves. As predicted from life-history pat-
terns, long-term population growth rates (and hence predicted ex-
tinction probabilities) are relatively very sensitive to values of juvenile
survivorship. Models are also sensitive to variation in the population
ceiling and environmental noise, which tend to act in a comple-
mentary manner. A simple model with no age structure was able to
fit the data on large initial population sizes but not on small initial
population sizes, showing that life cycle characteristics interact with
the various sources of stochasticity and hence have to be taken into
account to produce a precise model of the extinction process.
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Along with the ever-increasing need for conservation, the
study of population persistence and extinction is becoming
the subject of much interest (Soulé 1987; Simberloft 1988;
Caughley 1994; Belovsky et al. 1999; Holsinger 2000; Vuce-
tich et al. 2000). The simplifications that understandably
characterized early models of the extinction process may
have resulted in failure to capture some of its essential
features.

First, most extinction models ignored population struc-
ture, simply using as the dependent variable numbers of
individuals (or females) in a population regardless of age
or other factors. Recently, however, it has become clear
that extinction models incorporating the essential features
of a species life history (Caswell 1989; Ferriere et al. 1996;
Mills et al. 1996; Legendre et al. 1999; Caswell 2000) have
the potential to achieve a major advance. In particular, the
number and nature of developmental stages and how sto-
chastic and deterministic factors might vary with those
stages may be crucial in unraveling interspecific differences
in extinction patterns.

Second, many models excluded one or more funda-
mental properties of real populations. The first of these,
demographic stochasticity, is inherent to the birth and
death process itself: chance events might lead all members
of a population to die before giving birth. The process is
important for small population sizes (e.g., MacArthur
1972; Goel and Richter-Dyn 1974; Pimm et al. 1988), and
a model including only demographic stochasticity dem-
onstrated that persistence time increases roughly expo-
nentially as a function of the carrying capacity (Lande
1993). The second property, environmental stochasticity,
reflects the fact that the environment is changing over time
and that individuals are not equally fitted to all environ-
mental variations. This kind of stochasticity translates into
vital rates changing over environments. Two subdivisions
of environmental stochasticity are distinguished (Schaffer
1987): small-to-moderate perturbations that continuously
arise and large perturbations (often called catastrophes)
that are episodic and dramatically reduce population size.
At moderate-to-large population sizes, both sorts of en-
vironmental stochasticity are more important than demo-
graphic stochasticity, since persistence time under envi-
ronmental stochasticity increases only as a power function
of the carrying capacity (Lande 1993). The effect of en-



vironmental stochasticity depends on the magnitude of its
variability (Pimm et al. 1988; Vucetich et al. 2000), on the
shape of its variability (Ludwig 1996), on the temporal
autocorrelation (Foley 1997), and, for catastrophes, on the
magnitude and frequency of such events (Lande 1993).
Finally, the necessity of a population ceiling or other form
of density dependence has not often been assessed in the
full context of population structure and kinds of stochastic
extinction.

The respective importance of population ceilings, en-
vironmental stochasticity, and demographic stochasticity
in determining extinction patterns in theory has been de-
bated (Pimm et al. 1988; Schoener and Spiller 1992; Lande
1993; Mangel and Tier 1993, 1994; Vucetich et al. 2000).
For example, environmental stochasticity is predicted to
explain much population-size variation when populations
are medium to large (Holsinger 2000), and extinction rates
are predicted to be strongly and positively related to en-
vironmental variance (Vucetich et al. 2000; but see Belov-
sky et al. 1999). Without a ceiling, populations with a
positive rate of increase might often be expected to reach
huge sizes at which they are safe from all but catastrophic
extinction (Goel and Richter-Dyn 1974). In the same way,
just as demographic stochasticity alone cannot account for
extinction of large populations, its action is required when
environmental stochasticity and a population ceiling re-
duce numbers to small sizes (Foley 1997). Then, it is most
likely that a combination of the three factors has to be
involved. To determine to what extent this is true as well
as to investigate the role of life-history structure, we an-
alyzed appropriate population-size data for each of two
spider species drawn from censuses of 108 islands with
mostly 20-yr, continuous time series.

First, for the spider data we asked, can any one or pair-
wise combination of demographic stochasticity, environ-
mental stochasticity, and a population ceiling satisfactorily
explain the empirical extinction curves, or are all three
factors necessary? These three elements may not be equally
conspicuous in the spider system. While demographic sto-
chasticity is an internal necessity, the others are in part
properties of the environmental situation. Environmental
stochasticity in the form of storms, drought, and other
chronic variation is quite conspicuous (Spiller and Schoe-
ner 1988, 1995, 1996; Schoener and Spiller 1999). Extreme
environmental catastrophes are not, however, reflected in
our data; while devastating hurricanes impacted areas at
or near our study site (Spiller et al. 1998; Schoener et al.
2001), no such event occurred during the 20-yr period
over which the data used here were collected. A population
ceiling may be produced by density-dependent factors
such as competition and predation. Although we did not
test for intraspecific competition, a field experiment failed
to detect interspecific competition between the orb spiders
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in this study (Spiller and Schoener 2001); this is consistent
with most other field experiments on orb spiders (review
in Wise 1993). The lack of competition in orb spiders may
be partially explained by the foraging mode of the species
(Wise 1993); spider densities need to be very high to cause
competition for food. Cannibalism was found to be a
density-dependent limiting factor in cursorial and bur-
rowing wolf spiders (Wagner and Wise 1996; Moya-Larafno
et al. 2002), and interference (including intraguild pre-
dation) may often be an important limiting factor for
cursorial spider species in structurally simple ecosystems
(review in Marshall and Rypstra 1999), but such inter-
actions may be less important for sedentary orb spiders.
However, predation by lizards was repeatedly shown to be
a major limiting factor for the subject species (Schoener
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Figure 1: Extinction patterns in Metepeira datona and Argiope argentata.
The number of years of continuous persistence (censuses done annually
each spring) are plotted against the initial population size, in this case,
that recorded in 1984. Note that Metepeira has a more regular relationship
and that large populations can rather frequently become extinct in
Argiope.
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and Spiller 1999), and this interaction may be stronger in
wet years, when spider densities are relatively high, than
in dry years (Spiller and Schoener 1995, 1996). Although
islands with lizards are not included in this study, the effect
of other predators, such as birds, wasps, and other pred-
atory arthropods, may also be density dependent. We have
observed wasps attacking the subject species on small is-
lands with high spider densities. Hence, when spiders be-
come very dense, they may begin to attract wasps foraging
in the general vicinity of the island; the higher the spider
density, the more wasps they attract. This would produce
a ceiling effect analogous to the one used in the present
model. Indeed, our successful experimental introductions
of Metepeira on large islands (Schoener and Spiller 1995)
produced a rapid growth phase and then a (much fluc-
tuating) leveling-off period.

Second, we wished to determine how the differing life
histories of the common species might affect extinction
patterns. Metepeira datona is a small-bodied species that
has a relatively low extinction rate overall, with a high
average standing population size over time and a relatively
low coefficient of variation of population size over time
(Schoener and Spiller 1992). In contrast, Argiope argentata
is a large-bodied species that shows a relatively high ex-
tinction rate overall, with a moderate average population
size and a relatively high temporal coefficient of variation.
Most striking is the difference between the two species in
persistence ( =nonextinction) as a function of initial pop-
ulation size (fig. 1): while Metepeira shows a fairly strong
such relation (Pearson’s r = 0.51, P = .015), Argiope
shows almost no relation (r = 0.16, P = 43); these dif-
ferences are especially dramatic for large initial population
sizes, which are much more likely to crash to extinction
in Argiope than in Metepeira. The species were observed
on the same set of islands and over the same time period,
so the species differences just described cannot result from
differences in habitat or weather conditions. The two spi-
der species do, however, vary in life history: they differ
substantially in fecundity (Argiope’s is much higher) and
developmental time (2 mo for Metepeira and 4 mo for
Argiope), and they differ moderately in survivorship (Met-
epeira juvenile survival appears higher; Argiope adult sur-
vival is higher).

In short, our goals were to see whether we could predict
the observed patterns of extinction reasonably closely and,
if so, to determine what sources of stochasticity and levels
of complexity in the life cycle needed to be incorporated
to achieve this target. While thus emphasizing precision,
which is especially important for conservation purposes,
we do explore various ways to simplify such models in
order to achieve greater understanding.

Methods
Sites, Species, and Census Procedures

Study islands were located in the central Bahamas, all
within 20 km of Staniel Cay, Exumas. Islands ranged in
vegetated area from 1 to 5,444 m’ and were roughly log-
uniformly distributed within this areal range (Schoener
1991). Individuals of the two species were located mainly
in their webs but were counted wherever they occurred.
While males in particular might not be in webs a sub-
stantial proportion of the time, most females and juveniles
would be expected to be there, given that this is how they
obtain food. Hence, our data are especially accurate for
adult females and immatures (including females), making
the female-based life cycle models approach particularly
suitable. Recounts of the same islands a few days apart
gave little difference (census details in Schoener and Spiller
1992).

Censuses were conducted at the same time of year (late
April-May, the end of the dry season) annually from 1981
(or 1982) through 2000. Spiders censused frequently on a
very large island had variation between years at this time
less or no greater than between-year variation during other
months (Schoener and Spiller 1992).

Metepeira datona adult females average 2.5-4.5 mm.
Argiope argentata adult females average 20-25 mm. The
larger size of Argiope than Metepeira is associated with at
least two life-history features: the former has a much
longer developmental time and a larger clutch size. The
somewhat greater survivorship in adult Argiope may also
be related to its larger size.

Simple Demographic Model

The main features of the age-structured models contained
in the next section are first presented using a simple model
with no age structure. This simple model was in fact built
from the age-structured one and is used to see how de-
letion of age structure affects extinction likelihood. The
simple model has a single equation describing change in
population size n from one time step to the next:

n' = An. o))

In one of the species for which we have data, there is an
approximately 2-wk period between clutches, and eggs
hatch in a 2-wk period as well. Other developmental tran-
sitions occur in multiples of 14 d in both species. Hence,
we selected a 14-d period as the time step: it is the largest
time interval compatible with the estimated life cycle tran-
sitions in both species. The growth rate N\ in equation (1)
is computed from the life cycle of each species as embodied
in the age-structured models. Indeed, N cannot be esti-
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Figure 2: Life cycle graphs for Metepeira and Argiope

mated from the yearly population counts: such trajectories
erratically fluctuate around some long-term value as de-
termined by stochastic and other factors, rather than al-
lowing potential growth rate to be measured as from an
expanding population (see “Life Cycles” in “Results”).

To account for environmental stochasticity, relation (1)
is modified:

n' = N\n, )

with A, drawn from a normal distribution with mean A\
and standard deviation 6 (the distribution is truncated to
ensure nonnegative values). To account for demographic
stochasticity, the number of individuals at the next time
step is computed by summing n samples of the Poisson
distribution:

n' = Poisson(n, \.). (3)

e

A population ceiling Q is introduced as follows:
n’ = Poisson(ny, \.), 4)

with

2

Q
ny = if n>Q then — else n. (5)
n

Equation (5) means that as soon as population size n goes
above the ceiling ©, it is set equal at the next time step to

Q (the equilibrium value of 1) times the proportional over-
shoot Q/n.

Age-Structured Models

Life Cycles. Female-based life cycles (Caswell 1989, 2000)
were constructed for Metepeira and Argiope on a 14-d time
step basis. There were four juvenile age classes for Met-
epeira and eight juvenile age classes for Argiope as well as
one adult class for each species (fig. 2). The number of
juvenile age classes is determined by the estimated length
of the developmental period (table 1; number =
developmental time/14); it is not the actual number of
juvenile instars. We mainly describe the model for Met-
epeira, with the model for Argiope being similar. Models
were analyzed using the ULM software (Legendre and
Clobert 1995; Ferriere et al. 1996).

Recursion relations from one time step to the next (time
step = 14 d, n; = number of individuals in the ith age
class) were

n, = s,oafns, )
ny = sn, (7)
ny = sn,, (8)
n, = sn;, 9)

ny = sn, + vns. (10)
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Table 1: Life-history and demographic features on a 14-d basis

Metepeira Argiope
Population vector N [, ny, my, n, ns] [ny, ny, ny, 0, Ny, B, N, Ay, 1)
Egg survival s, 9 9
Juvenile survival s .59* 45
Adult survival v .59 .78
Fecundity f 31 1,256
Probability of mating o .8 .8
Primary sex ratio s .5 5
SD for environmental stochasticity & 26° 18°
Population ceiling C 5-60° 5-11°
Growth rate \° 1.21 1.11
Generation time T°¢ 5.9 (83 d) 11.4 (160 d)
Stable age distribution %° [51 2512 6 6] [59 24 10 4 3]
Reproductive value %° [3 6 12 26 53] [3°4 10 24 59]
Note: Developmental time is 2 mo in Metepeira and 4 mo in Argiope.
* Assumed values.
" Adjusted values.
¢ Computed from above parameters.
4 Total of last five age classes.
¢ Total of first five age classes.
The first relation corresponded to hatchlings, with f the n' = Binom[Poisson(ms, f), s,0], with
fecundity, o the primary female sex ratio (proportion of )
females at birth), o the probability of a female being ms = Binom(ns, ), (12)
mated, and s, the egg survival. Relations (7)—(9) corre- #, = Binom(n,, s, (13)
sponded to juveniles, with s the juvenile survival rate, and
relation (10) corresponded to adults, with » the adult sur- n’, = Binom(n,, s), (14)
vival rate. Demographic parameters are listed in table 1; ) )
their measurement is detailed below. n, = Binom(n,, s), (15)
ny = Binom(n,, s) + Binom(n,, v). (16)

Environmental Stochasticity. Environmental stochasticity
(Tuljapurkar 1990) was modeled by randomizing juvenile
and adult survival rates around their mean values. We used
(a variation of) the beta distribution with standard de-
viation 6, 6 measuring the strength of environmental noise.
The beta distribution has the advantage of being con-
strained between 0 and 1 and is therefore suitable for
survival rates. For example, the stochastic juvenile survival
rate was

s, = Betaf(s, 9). 11)

Demographic parameters o (probability of mating), f (fe-
cundity), and s, (egg survival) were not randomized be-
cause they did not influence the dynamics significantly
(see “Results™).

Demographic Stochasticity. Demographic stochasticity was
modeled by building a branching process on the relations

(6)—(10):

The notation x = Poisson(n, f) means that the number
of eggs x was computed as the sum of n samples of the
Poisson distribution with mean the fecundity f, while
n' = Binom(n, s) means that the number n’ of survivors
was computed as the sum of n samples of the Bernoulli
distribution with mean the survival rate s.

Population Ceiling. We used a population ceiling C acting
on the last two age classes by elaborating equation (5). If
the number m = n, + n, of individuals in those classes
was above the ceiling at some time step, the reduction at
the next time step was in proportion to C/m as follows.
We distributed the number in age classes 4 and 5 pro-
portionately to the number of individuals contributing to
those classes. Since n, depends on the value n, at the
previous time step while n, depends on n, and n; at the
previous time step, we used the following formulas:
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Figure 3: Fit m of simulated probability of extinction (P{™) to observed probability of extinction (P**) for Metepeira as a function of population
ceiling (C) and environmental stochasticity (standard deviation &) under demographic stochasticity. The fit is computed as m =
{(l/D)Z,D:l [P2*(i) — Pi™(i)]’}"* over D vyears of observation. A, Observation: one individual; initial population vector N(0) = (0, 0, 0, 0, 1);
D = 13 yr. B, Observation: 21-50 individuals; initial population vector N(0) = (32, 16, 8, 4, 4); D = 19 yr.

C n,C
= -, 17
haa mn; + m a7
C mC
Moy = — . (18)
mn; +m

These numbers were rounded to their nearest integer val-
ues. Relations (12)—(16) become

n; = if n, + ny> C then n,, else Binom (n,,s), (19)
ny = if n, + ny> C then ny, else Binom (n,, s)
+ Binom (15, v). (20)

Immigration-Emigration. We assumed that most immi-
grants arrived via aerial dispersal (ballooning). The vast
majority of ballooning spiders are between 0.2 and 1.0 mg
(Greenstone et al. 1987), which is about the range of the
first stage for both species in our study. Immigration with
rate p was modeled by randomly adding one individual
to age class 2 at each time step with probability p (Bernoulli
sample with mean p). Emigration with rate g was modeled
by reducing survival rate to age class 2 by 1 — g. Thus,
immigration was independent of population size, while
emigration depended on the number of juveniles in age
class 1. Relation (13) became

n’, = Binom[n,, (1 — g)s] + Ber(p). (21)
These parameters were only included in one set of sim-
ulations and, as we shall see, have the same effect as en-

vironmental stochasticity, so we did not explore them
further.

Parameters Estimates and Fitting the Models

Age-structured models were constructed for both species
by building recursion relations from the life cycle. Only
two parameters were left free for each species: the pop-
ulation ceiling C and the environmental noise standard
deviation 6 (immigration-emigration was assimilated into
environmental noise). To adjust C and 6, we computed
the root mean squared difference between observed and
predicted probability of extinction: figures 3 (for Met-
epeira) and 4 (for Argiope) present two cases with different
initial population-size intervals. In those figures, the value
of the fit is plotted as a surface that is a function of the
adjusted parameters C and 6. A set of pairs (C, 6)—the
ridges in figures 3 and 4—gives the best fit. The fit is such
that C can be considered as an increasing function of 6.
Therefore, C and 6 were adjusted for each species in the
following way. First, C was determined for the largest ini-
tial population-size interval so as to fit the corresponding
extinction curve within the constraint that the correspond-
ing simulated population size not exceed the approximate
largest population size observed on the islands (note that
by definition [see “Age-Structured Models”], C includes
the last two age classes only). In this case (C = 60 for
Metepeira, C = 11 for Argiope), fitted surfaces (figs. 3B,
4C) show that 6 is constrained in a small range because
the best fit ridge is almost parallel to the C-axis, the ridge
having steep slopes. Then 6 was fixed in a given species
using the value for this largest population-size interval
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(B)

Figure 4: Fit of simulated probability of extinction to observed probability of extinction for Argiope as a function of the population ceiling (C) and
environmental stochasticity (6; see legend of fig. 3). A, Observation: one individual; initial population vector N(0) = (0, 0, 0, 0, 0, 0, 0, 0, 1);
D = 18 yr. B, As in A but without demographic stochasticity. In this case, the fit requires a large 6 and is almost independent of C. C, Observation:
21-50 individuals; initial population vector N(0) = (0, 0, 0, 0, 16, 8, 4, 2, 2); D = 18 yr. D, As in C but without demographic stochasticity.

(6 = 0.26 for Metepeira, 6 = 0.18 for Argiope). Finally,
the best C fitting the extinction curves was determined
separately for each smaller initial population-size interval.

The simple model was fit using the same procedure as
for the age-structured models; the growth rate A was com-
puted from the life cycle separately for each species (see
“Results”). This resulted in environmental noise standard
deviations of 6 = 0.34 and 6 = 0.37 for Metepeira and
Argiope, respectively.

The values found for environmental noise standard de-

viations 6 and 0 are about 0.3 times the average parameter
value, as commonly used when exploring environmental
stochasticity (Mills et al. 1996).

The other parameters were not fitted in any way but
were all estimated from biological considerations, includ-
ing field data from the islands on which we measured
extinction, as follows.

Survival and Developmental Time. For Argiope, we mea-
sured survival of cohorts of marked adults inhabiting



lizard-free islands. Four such cohorts (one to 22 individ-
uals) were followed for periods spanning ~1.5 mo. Ad-
ditionally, we followed two cohorts (four to 65 individuals)
of hatchling Argiope deliberately introduced onto a single
island for 1-1.5 mo. Developmental period was estimated
as the length of time the average individual grew from
hatchling to adult size.

We determined adult-female Metepeira survival using
three sets of data from lizard-free islands. First, we fol-
lowed introduced colonists (four to 10 individuals) on a
single island for 15 d. Second, we used data from a previous
introduction experiment on 10 islands at the same study
site that were followed for 14 d (Schoener and Spiller
1995). Third, we measured survival over an 8-d period in
enclosures on the main island of Staniel Cay from which
lizards had been removed (Spiller and Schoener 1988). We
combined those three sources of data by weighting esti-
mates by the number of islands or plots used for the mea-
surements. We assumed that survival in Metepeira juve-
niles, whose webs were often attached to those of adults,
was the same as adult survival. Developmental period was
estimated from a cohort deliberately introduced onto an
island as the length of time the average individual grew
from hatchling to adult size.

Table 1 gives the averages for both species.

Fecundity. The number of eggs per clutch were counted
from nine clutches for Metepeira and two clutches for
Argiope collected on Staniel Cay: these equal (X = 1 SD)
30.7 £ 0.8 and 1,256.0 £ 575.6, respectively. During a
previous study, daily observations revealed that adult fe-
male Metepeira under natural conditions produced one
clutch about every 13 d (Spiller and Schoener 1990); we
assumed a 2-wk interval between clutches for both species.

Parameters Determining Juvenile Numbers in the First Stage.
The number of new juveniles produced at the first time
step (eq. [1]) is equal to the product of five quantities:
number of adult females, probability of mating, fecundity,
egg survival, and primary sex ratio. Information on three
of these quantities, which appear in the model only in
equation (1), is nearly nonexistent for the species in ques-
tion. From casual observation, we estimate egg survival as
0.9 and the probability of mating as 0.8. The primary sex
ratio is estimated as 0.5 because the only data of which
we are aware for spiders (Deevey 1949) have this value.

Determination of Extinction Probabilities as a
Function of Initial Population Sizes

We included only populations from islands without lizards,
since use of survival parameters from plots with lizards in
the model for Metepeira gives a negative rate of deter-
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ministic population growth. We had available to us 43
nonzero time series for Metepeira and 55 for Argiope, each
lasting 19-20 yr and consisting of yearly counts.

Observed probabilities of extinction were classified ac-
cording to similar initial population sizes. We used the
following intervals: 1, 2-3, 3-5, 6-10, 11-20, 21-50, 51+
individuals. We computed extinction probabilities in two
ways. In both ways, for each interval, the cumulative prob-
ability of extinction was computed from the number of
observations falling within the interval that were followed
by a zero: this corresponds to the number of populations
going extinct whose initial number falls within the interval.
In the first way, each population number was considered
as an independent initial population size. In the second
way, we used only population numbers preceded by zero
as initial population sizes. Both ways appeared to give
similar results, the reason most probably being that during
a year at least three cohorts occur, rendering yearly counts
basically independent. We used only the first way because
of the much larger sample sizes it provided (table Al in
the online edition of the American Naturalist).

The ranges of initial population sizes were also corrected
for the fact that males and females were actually counted
in the field, while our model includes only females. Data
from 1989, 1991, and 1997 showed that approximately
68% of Argiope and approximately 75% of Metepeira were
females (note that very small individuals cannot be sexed).
We therefore assumed 70% females in counts for both
species. Thus, for example, the model range of 3-5 in-
dividuals corresponded to about 4-6 counted individuals
(males and females) in the field.

To account for the fact that only a fraction of very young
juveniles can actually be counted in the field and that we
deliberately did not include hatchling numbers in our
counts (see “Sites, Species, and Census Procedures”), the
model number of observed individuals was counted as

n, -
Mobs = E+”2+”3+”4V5+”5 (22)
for Metepeira and
n  n
Nops = Z+?+n3+n4+n5+n6+n7+n8
x \s+ n, (23)

for Argiope. In these formulas, the number of juveniles is
reduced, and the factor s'? is introduced to correct for
the fact that the model assumes mortality (or emigration)
at the end of a time step, whereas observations occur at
any time continuously throughout the time step.
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Table 2: Sensitivities (S,) and elasticities (E,) of growth rate N\ to changes in
values of demographic parameters (x) for Metepeira and Argiope

Metepeira Argiope

x S, E. x S, E.
Egg survival s, 9 23 .17 9 11 .09
Juvenile survival s 59 138 .67 45 1.74 .70
Adult survival v 59 .33 .16 78 .29 21
Fecundity f 31 .007 .17 1,256 .00008 .09
Probability of mating o .8 .26 .17 .8 d12 .09
Primary sex ratio o .5 41 17 5 .20 .09

Note: Underlined values are the largest for a given species.

Results
Life Cycles

For Metepeira, the long-term growth rate A\ was 1.21. Such
a large growth rate (21% increase in 14 d) was observed
on samples of expanding populations from small numbers
of individuals experimentally introduced to small islands
(Schoener and Spiller 1995). For Argiope, A was 1.11 (11%
increase in 14 d). These values of A were used in the simple
models (eq. [1]).

For both species, juvenile survival s was by far the most
sensitive parameter, the one whose fluctuations impact the
long-term growth rate the most. Table 2 illustrates this for
demographic parameters using sensitivity and elasticity;
the former measures arithmetic and the latter proportional
(multiplicative) changes in A as a function of changes in
the parameter. Sensitivity to juvenile survival is typical of
short-lived species (Lebreton and Clobert 1991).

For both species, the age structure included only a small
proportion of adults, while reproductive value was con-
centrated in the last three age classes, with more than 50%
in the adults (table 1).

Comparing Observed with Expected
Extinction Probabilities

Figures 5-7 are plots of the fraction of populations be-
coming extinct as a function of time; they are thus cu-
mulative probability distributions for extinction. Initial
population distributions were chosen close to the stable
age distribution, giving more weight to the later age classes
(which are more likely to be observed). Each theoretical
curve was computed from 1,000 Monte Carlo—simulated
population trajectories. The number of observed individ-
uals was computed from the number of simulated indi-
viduals using equations (22) and (23). For example, in
figure 6D, the simulated initial population size is 32 +
16 + 8 + 4 + 4 = 64, and by equation (22), this corre-
sponds to 37 observed individuals, thereby falling within
the range 21-50.

The complex models and data of figures 6 and 7 allow
the following general conclusions.

1. The complex models fit the positions of the extinction
curves for the two species quite well; that is, large Argiope
populations have a higher extinction likelihood than do
large Metepeira populations (cf. fig. 6D, 6E with fig. 7E,
7F), whereas small Argiope and Metepeira populations
show less difference in extinction likelihood (cf. fig. 64,
6B with fig. 7A, 7B). Differences between the species in
the simulations come from differences in life-history traits,
difference in adult carrying capacity range (C = 5-60 for
Metepeira vs. C = 5-11 for Argiope), and difference in
environmental noise intensity (6 = 0.26 for Metepeira vs.
6 = 0.18 for Argiope).

2. For small initial population sizes, the probability of
extinction is highly dependent on initial population age
structure. For example, figure 7A shows for Argiope that
populations consisting of one adult (squares) have a much
lower extinction curve than populations consisting of one
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Figure 5: How variations in key parameters affect the probability of ex-
tinction for Argiope, models versus data. Observation: 21-50 individuals
(solid squares). Simulation: initial condition N(0) = (0, 0, 0, 0, 16, 8, 4, 2,
2). In each case, the best possible fit is shown. Demographic
stochasticity + population ceiling (C = 10) + environmental stochasticity
(6 = 0.18; open squares). Population ceiling (C = 40) + environmental
stochasticity (6 = 0.28; open diamonds); demographic stochasticity +
population ceiling (C = 2; open circles); demographic stochasticity +
population ceiling (C = 10) + immigration-emigration (p = q = 0.7;
open triangles). The last case shows that immigration-emigration acts sim-
ilarly to environmental noise.
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Figure 6: Probability of extinction as a function of time for Metepeira,
with several initial population sizes: observed (solid symbols) and sim-
ulated (open symbols, age-structured model; crosses, simple model), with
demographic stochasticity, population ceiling (C = 5-60; @ = 50—
1,500), and environmental stochasticity (6 = 0.26; 8 = 0.37). A, Obser-
vation: one individual (solid squares), two individuals (solid triangles).
Squares, N(0) = (0, 0, 0, 0, 1); C = 5. Triangles, N(0) = (0, 0, 0, 1, 1);
C = 6. Crosses, n(0) = 1; @ = 50. B, Observation: three to five. Squares,
N(0) = (0, 0, 4, 2, 1); C = 12. Crosses, n(0) = 4; @ = 50. C, Obser-
vation: six to 10 (solid squares), 11-20 (solid triangles). Squares,
N(0) = (8, 4, 2, 1, 1); C = 20. Triangles, N(0) = (16, 8, 4, 2, 2); C =
25. Crosses, n(0) = 15 @ = 50. D, Observation: 21-50. Squares,
N(0) = (32, 16, 8, 4, 4); C = 40. Crosses, n(0) = 64; Q = 200. E, Ob-
servation: 51+. Squares, N(0) = (64, 32, 16, 8, 8); C = 60. Crosses,
n(0) = 128; Q@ = 1,500.

individual in the previous age class (triangles). This feature
comes from demographic stochasticity.

3. The models are very sensitive to variation in the
population ceiling C and to variation in environmental
noise 6. This can be seen by looking at the fit surfaces
(figs. 3, 4A, 40C). Unless the best fit ridge is followed, the
fit drops abruptly as C or 6 is varied. Note, however, that
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within a given species, we use the same value for ¢ no
matter what the initial population size (e.g., for all panels
in fig. 6 or all panels in fig. 7) and that models fit well in
all cases.

4. The best-fitting population ceiling C increased with
initial population size within each species. This is in agree-
ment with the fact that larger initial population sizes in
the data should on average come from islands having larger
areas and hence larger carrying capacities.

5. Demographic stochasticity could not be excluded.
This is shown in figure 4B and 4D for Argiope: when
demographic stochasticity is ignored, a large (unrealistic)
6 is required, and the fit is almost independent of the
population ceiling C. Moreover, when demographic sto-
chasticity is excluded, the shape of the extinction curve
with time can differ qualitatively from the shape of the
observed curve (fig. 5, open diamonds).

6. Environmental stochasticity could not be excluded.
Figure 5 (open circles) shows that omitting environmental
stochasticity necessitates a very small C, and the shape of
the simulated curve deviates greatly from the observed one,
quickly reaching a plateau with time.

7. A population ceiling was necessary. The largest ob-
served population size was 1,920 individuals for Metepeira
and 671 individuals for Argiope. For Metepeira, the ceiling
was hit about 20% of the time; for Argiope, the ceiling
was hit about 15% of the time. When there is no ceiling,
simulated population trajectories blow up to very large
numbers. For example, in the case of figure 6A with one
individual introduced, in 2 yr about half of 1,000 Monte
Carlo simulations gave extinction, while population size
of the others attained an average size of about 100,000
individuals.

8. The immigration-emigration process acts nearly
equivalently to environmental noise in these models. Fig-
ure 5 illustrates that large immigration-emigration rates
and no environmental noise (triangles) produce nearly the
same fit as environmental noise and no immigration-
emigration (squares).

The Fit of the Simple Model with No Age Structure

As in the complex model, the best-fitting population ceil-
ing € increased with initial population size, less steeply
for Argiope (2 = 200-300) but more steeply for Metepeira
(2 = 50-1,500) than in the complex model (note that
population ceilings represent all individuals, in contrast to
those for age-structured models: see “Age-Structured
Models”). The best-fitting environmental noise intensities
were about equal for the two species (f# = 0.37 for Met-
epeira vs. § = 0.34 for Argiope) and larger than for the
complex model.

The simple models sometimes fit the extinction curves
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as well as the age-structured ones (crosses in figs. 6C, 6D,
6E, 7D, 7E, 7F). The fit is less good for small initial pop-
ulation intervals (crosses in figs. 6A, 6B, 7A, 7B, 7C), with
the lack of fit being more pronounced in Argiope, which
has a longer immature period than Metepeira.

Discussion

Sensitivity of the Model Predictions to
Variation in Parameter Values

If sensitivities or elasticities of the long-term growth rate
N to a given parameter (table 2) are relatively high, then
extinction probabilities are also expected to be strongly
affected by variation in that parameter (Caswell 2000). The
deterministic long-term growth rate N was especially sen-
sitive to small variations in juvenile survivorship: an x
percent decrease in this value translated into a (2/3)x per-
cent decrease in A. This is expected where juvenile sur-
vivorship rate is operating, since for both species length
of the immature phase was relatively great (four to eight
transitions). In contrast, models were relatively insensitive
to variation in fecundity (clutch size; see table 2). Finally,
the probability of extinction was very much dependent on
values of both 6 and C.

Limitations of the Estimated Parameter Values

The life-history data have various weaknesses. Three of
the four parameters in table 1 are assumed values, although
the model is not very sensitive to them (see “Results”).
Data on fecundity are rather sparse for Argiope, although
model sensitivity to this parameter was also low. Model
predictions were most sensitive to survival, especially ju-
venile survival. Although cohort sizes were often small
(unfortunately necessarily so) for Argiope, here we had on-
site data, some experimentally obtained. For Metepeira,
data on adult survival were especially good, but juvenile
survival was assumed. Developmental period was mea-
sured by observing how long individuals took to mature,
again on site, but it was only measured for one or two
cohorts for each species. However, even though some of
the estimated parameter values were based on small sample
sizes or just assumed values, predicted extinction rates of
the full model were close to observed values. This suggests
that the life-history data were obtained on typical islands
during typical times and that our assumed values were
fairly accurate.

Precision of the Model Fits

Although the models have either invariant parameters or
(in two cases) parameters that are varied within limits,

they fit the data on island-spider extinction overall rather
well, not just in terms of the qualitative shape of the curves
but even in terms of their quantitative position. However,
in some cases, we might wonder whether a good observed
fit is obtained for the wrong reason. For example, the
model generates good predictions of extinction rates even
for small population sizes without considering potential
Allee effects (Courchamp et al. 1999; Legendre et al. 1999).
Yet, some of our populations might consist of only a single
female so that no male could have been available to allow
reproduction. Even though we explicitly ignored these ex-
treme situations, we may have inadvertently reproduced
an Allee effect on female mating by fitting an artificially
low ceiling, thereby enhancing extinction probability. To
examine an Allee effect explicitly, we generated for small
population sizes extinction probabilities using a two-sex
model (Caswell and Weeks 1986; Legendre et al. 1999) and
compared them with those given by the female-based
model used above. The two models produced only mar-
ginally different extinction probabilities (results not
shown). Indeed, note that the elasticity for mating prob-
ability is much smaller than that for juvenile survival (table
2).

Deviations between the observed and predicted curves
occur for both species in the tail of the curves (fig. 6 for
Metepeira; fig. 7 for Argiope). The way the probabilities of
extinction are estimated cumulatively introduces a system-
atic bias that can be considered a sampling-error effect:
as time elapses, a smaller number of observations con-
tribute to the estimation (table Al). Hence, a relatively
small number of extinctions at the end of the time series
can give a large apparent deviation. This occurred for Met-
epeira in figure 6E, where the observed curve jumps above
the predicted one at the end. Most of the observed curves,
however, have a tendency to level off while the predicted
ones still increase, mainly because of environmental sto-
chasticity. The reason for this slight discrepancy might be
related to the fact that islands are not, even accounting
for differences in area, identical replicates as in a laboratory
experiment. For example, some have shorter vegetation
and/or are more exposed (Toft and Schoener 1983). These
differences will translate into environmental fluctuations
of different magnitudes. Among a group of similar initial
population sizes, those on islands expressing high envi-
ronmental fluctuations will have short persistence times.
Those on islands having low environmental fluctuations
will have long persistence times and eventually will dom-
inate in the cumulative curve of extinction probability.
Hence, islands with low environmental fluctuations (there-
fore low probability of extinction) will accumulate as time
elapses, causing a flattening of the cumulative extinction
curve. This probable selection effect is comparable to the
one observed when trying to detect senescence in natural
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Figure 7: Probability of extinction as a function of time for Argiope, with
several initial population sizes: observed (solid symbols) and simulated
(open symbols, age-structured model; crosses, simple model), with demo-
graphic stochasticity, population ceiling (C = 5-11; @ = 200-300), and
environmental stochasticity (6 = 0.18; 6 = 0.34). A, Observation: one
individual. Squares, N(0) = (0, 0, 0, 0, 0, 0, 0, 0, 1); C = 5. Triangles,
N(0) = (0, 0,0,0,0,0,0, 1, 0); C = 5. Crosses, n(0) = 1; Q = 200. B,
Observation: two (solid squares), three (solid triangles). Squares,
N(0) = (0, 0,0,0,0,0,0, 1, 1); C = 5. Crosses, n(0) = 2; Q = 200. C,
Observation: three to five (solid squares), six to 10 (solid triangles).
Squares, N(0) = (0, 0, 0, 0, 0, 4, 2, 1, 1); C = 8. Crosses, n(0) = 12;
Q = 200. D, Observation: 11-20. Squares, N(0) = (0, 0, 0, 0, 0, 8, 4, 2,
2); C = 10. Crosses, n(0) = 20; 2 = 250. E, Observation: 21-50. Squares,
N(0) = (0, 0, 0, 0, 16, 8, 4, 2, 2); C = 10. Crosses, n(0) = 64; Q =
250. F, Observation: 51+. Squares, N(0) = (0, 0, 0, 64, 32, 16, 8, 4, 4);
C = 11. Crosses, n(0) = 128; Q = 300.

populations (Keyfitz 1985). Although being general, the
effect will show up only when the mean probability of
extinction is not that great, that is, for medium-to-large
population sizes.
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Necessary Components of an Extinction Model

Three basic ingredients of an extinction model—demo-
graphic stochasticity, environmental stochasticity, and a
population ceiling—were all found necessary to match the
spider extinction data both qualitatively and quantitatively.
Although one or more of these ingredients are sometimes
left out of theoretical treatments of extinction, the reasons
here for their necessary inclusion suggest that this omis-
sion may be inappropriate (Caughley 1994; Foley 1997).

When demographic stochasticity is omitted, small pop-
ulations persist too long and larger populations almost
never become extinct, unless 6 is unrealistically large (see
fig. 4B, 4D). Demographic stochasticity is always present,
of course, so ignoring it simply means that one is hoping
that large-number behavior will be overriding. But pop-
ulations become small on their way to extinction, so demo-
graphic accident can act as a terminal push for extinction
driven by environmental noise. Thus, ignoring demo-
graphic stochasticity would act to overemphasize the role
of environmental stochasticity.

For growing populations, once a population is no longer
small, it is effectively safe from demographic-stochastic
extinction (e.g., MacArthur 1972; Goel and Richter-Dyn
1974). However, environmental stochasticity allows mod-
erately large populations to become extinct (Lande 1993).
A ceiling prevents such populations from becoming so
large as to be effectively safe from all but catastrophic
extinction; when sufficiently small, C can interact with
demographic stochasticity to determine extinction prob-
ability (MacArthur 1972; Goel and Richter-Dyn 1974;
Lande 1993). In our study, without a ceiling, populations
having the demographic characteristics of the spider spe-
cies used would achieve numbers vastly greater than ob-
served. Moreover, our modeling of density-dependence
was rather loose because of stochasticity: population size
could go well above the ceiling before being set below it
at the next time step. On our small study islands, this type
of ceiling may be produced by wasps or other transient
predators (e.g., birds) that are attracted to islands with
high spider densities (see the first section of this article).
Experimental introduction of Metepeira onto small islands
suggests that a fluctuating ceiling does exist (Schoener and
Spiller 1995). This loose density dependence is reflected
in figures 3 and 4: the best fit ridge is almost parallel to
the C-axis, leaving room for a range of Cvalues compatible
with environmental noise 8. This might also come from
a hidden correlation in the data between noise and the
carrying capacity, since environmental stochasticity is po-
tentially affecting both the mean value of the demographic
parameters as well as the value of the ceiling. Indeed, it is
known (Boudjema and Cazelles 2001) that long time series
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(more that 200 entries) are needed to factor out the roles
of environmental stochasticity and density dependence.

Complex population dynamical behavior is known to
be another source of population variation (Metz et al.
1992), and the addition of environmental stochasticity
might enhance this complexity further. As advocated by
Ludwig (1996) and supported experimentally by Belovsky
et al. (1999), complex dynamical behavior might com-
monly be responsible for extinctions, especially in species
with a high potential growth rate or with a life cycle prone
to show this type of behavior. This was indeed the case
for our two species. Once more, were density dependence
and its interaction with the life cycle (which partly deter-
mines the incidence of complex dynamical behavior) ig-
nored, variation due to a ceiling would be ascribed to
variation in the environment, leading again to an over-
emphasis of the role of the latter source of stochasticity
and potentially to inappropriate conservation strategies.

However, although being all-important in explaining the
observed patterns of extinction, the exact magnitudes of
the effects of environmental stochasticity, population ceil-
ings, and demographic properties of the species are dif-
ficult to measure, since several combinations of environ-
mental noise 6 and the population ceiling C yield
approximately the same fit to the observed patterns (figs.
3, 4). For example, in figures 3 and 4, the best fits are
obtained either for small values of 6 and C or for high
values of 6 and C. This might result from the impossibility,
with data on counts, to discriminate between the effect of
environmental stochasticity and the effect of complex pop-
ulation dynamics when C is small (Leirs et al. 1997; Bel-
ovsky et al. 1999). To be able to measure more precisely
the respective intensity of these effects (not their opera-
tional effect, which was clearly demonstrated above), lon-
gitudinal data on rates or even on some environmental
variables might prove necessary.

Life Cycle Complexity and Population Behavior

Our study contrasts two types of life histories. In Met-
epeira, developmental time is relatively short and clutch
size relatively low. In Argiope, developmental time is rel-
atively long and clutch size relatively high. Additionally,
the species vary in survivorship—Argiope adults survive
better and its juveniles apparently less well than do Met-
epeira (recall also that Argiope is much larger than Met-
epeira)—and in growth rate N, with that of Metepeirabeing
larger (table 1). This latter difference might explain why
Metepeira has a lower extinction risk overall (fig. 1). Rel-
ative effects of fecundity versus survival can be assessed
for the two species using elasticities of their demographic
parameters (table 2), which is appropriate when param-
eters have different dimensions. Although some large dif-

ferences in fecundity exist, the contribution of fecundity
to variation in A is quite small in both species as compared
with that of juvenile survival. Argiope is more dominated
by variation in juvenile survival than Metepeira: juvenile
survival per stage is lower and drives eight transitions as
compared with four in Metepeira(fig. 2). In short, the pop-
ulation dynamics of Argiope are dominated by the length
of the immature period (the juvenile survival) and sec-
ondarily by the adult survival rate, while those of Metepeira
are also dominated by the juvenile survival, but fecundity
plays as important a role as adult survival rate (table 2).
The longer immature period of Argiope makes it more
sensitive to perturbation (perturbation effects last longer)
and indeed closer to semelparity, a trait known to promote
cycling (Caswell 2000). Greater fluctuations in Argiope
bring its populations closer to small values where demo-
graphic stochasticity can push the population to zero,
thereby giving Argiope greater extinction rates.

The fact that the simple model was able to fit data for
moderate-to-large populations fairly well could be ex-
plained by environmental stochasticity increasing in im-
portance and thereby compensating in part for the lack
of age structure. For both species, the fitting procedure
gave a large (and similar) environmental noise in the sim-
ple model (0 = 0.37, Metepeira; 0 = 0.34, Argiope),
whereas the fitted environmental noise values were smaller
in the age-structured model, especially for Argiope (6 =
0.26, Metepeira; 6 = 0.18, Argiope). Because perturbations
in age structure also produce transient oscillations (Tul-
japurkar 1990), noise in population trajectories results
from the combined effect of environmental stochasticity
and age structure; in the simple model, only the former
is available. Because Argiope has a longer immature period,
the contribution of age structure is more marked than in
Metepeira; this might explain why the simple model has
more difficulties compensating for age-structure variation
with environmental stochasticity in Argiope than in
Metepeira.

Although environmental noise can partly mimic the ef-
fect of age structure for larger population sizes, this is not
true for the smallest sizes. While evident for both species,
this failure is more pronounced in Argiope. Transient os-
cillations resulting from a deviation from the stable age
distribution not only are caused by the structure of the
life cycle in interaction with environmental stochasticity;
they will also be more pronounced at small than at
medium-to-large population sizes, in part because dem-
ographic stochasticity causes greater deviations at small
sizes. In our case, the transient phase would be more im-
portant for Argiope than for Metepeira because of the for-
mer’s longer immature period.

In short, inadequacies of the simple model probably
mainly come from its inability to incorporate the inter-



actions between the structure of the life cycle and the
various sources of stochasticity, particularly glaring when
initial populations are small. This is especially important
to realize for applications, since it is typically small pop-
ulations that are the focus of conservation efforts. Just as
for the population ceiling, ignoring an inherent property
of a process—in this case, the life cycle of the species—
will overemphasize the role of environmental stochasticity
to the detriment of other factors, potentially leading to
inappropriate conservation strategies.

Conclusion

Our investigation can be considered a variant of popu-
lation viability analysis (PVA), which attempts to char-
acterize population persistence under various conditions.
Some of the above pitfalls—together with a claimed lack
of biological realism, ambiguity in the variable to be con-
sidered (quasi extinction vs. extinction, expected time to
extinction vs. extinction probability), difficulty in esti-
mating parameters describing the different types of en-
vironmental variations, and poor precision of predicted
extinction rates (Ludwig 1996; Foley 1997; Holsinger 2000;
Vucetich et al. 2000)—have led to some skepticism about
the use of PVA models (Caughley 1994; Beissinger and
Westphal 1998). However, part of this skepticism is related
to the fact that PVA models have often been tested against
inappropriate data (Ralls and Taylor 1997; Beissinger and
Westphal 1998). Here we have documented patterns of
extinction for two spider species over a set of islands con-
tinuously monitored for 20 yr. The extinction curves we
documented are best explained by the interaction of three
factors: a population ceiling, demographic stochasticity,
and environmental stochasticity. Moreover, life-historical
features are necessary to simulate extinction. A good fit
to the observed curves could be obtained in some cases
with models of lower complexity, excluding demographic
stochasticity or age-structure, by ascribing to environ-
mental stochasticity variation due to an excluded factor.
However, the use of models simplified in such a way might
lead to false conclusions about respective contributions of
the various factors to the extinction process, in turn pos-
sibly misleading conservation policies.

What then is the role for simple models, if any, in the
studies of extinction? Simple, analytically transparent
models have explanatory power: they allow us to under-
stand in a qualitative way how natural processes should
work. This may be sufficient for a general overview of the
ecological world in its structure and dynamics. Applied
areas of ecology, particularly conservation, may have a
different objective, however. In the case of preserving spe-
cies, precision is at a premium; a small mistake in a quan-
titative prediction about extinction can lead to permanent
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loss, so we wish our models to contain everything we know
that is likely to make a difference. The study reported here
supports strong interactions between the structure of the
life cycle and the various sources of stochasticity, especially
at small population sizes. Therefore, we advocate as an
initial step in such modeling inclusion rather than sim-
plification. Sensitivity analysis of inclusive models can then
point to how reductions in complexity might best be
achieved, in turn guiding the most efficient data-gathering
strategy in further studies and perhaps eventually allowing
better analytical understanding.
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