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3.1 Introduction
The fate of populations depends on the life-history traits of the species and possible
adaptive changes in these traits in response to selective pressure. In unstructured
population models, life-history traits are compounded into few parameters, like
the intrinsic growth rate r and the carrying capacity K (see Chapter 2). Struc-
tured population models, based on life-cycle graphs, allow the effects of specific
life-history traits (survival rates, fecundities, generation time, age at maturity) on
population dynamics to be investigated. For example, sensitivities of the growth
rate to changes in life-cycle transitions can be computed. Individual life-history
traits are important determinants of a population’s extinction risk, and are also both
factors in and targets of a population’s adaptive response to environmental change.

When population size is small – always a concern in conservation biology –
both individual life-history traits and the structure of interactions between individ-
uals and the genetic system are expected to influence viability. The mating system,
for example, may be conducive to an Allee effect (see Chapter 2), and inbreeding
depression is a potentially important factor of the extinction process of small pop-
ulations. In this chapter, we study the interplay between population structure, in
terms of age and sex, and population persistence. Two-sex structured models that
incorporate specific features of the social mating system and possible differences
in male and female life cycles are analyzed. Also, attempts to merge genetic fac-
tors and demography into integrated models are presented. Size-structured models,
more appropriate to plants and some animal species, are not considered here, but
lead to similar developments.

3.2 Extinction Risk in Age-structured Populations
A life-cycle graph is a macroscopic description of an average organism within a
population, describing the effects of the life-history traits. A population is con-
sidered as a set of individuals that share the same life cycle, and is structured in
age classes. The life-history trait and resultant demographic parameters (survival,
fecundity) quantify the flows of individuals between age classes. Iterating the life
cycle in discrete time realizes the dynamics of the average life-history phenotype
in a given environment.
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42 A · Theory of Extinction

Essentials about structured deterministic models
The life cycle translates into matrix form, which enables several demographic
quantities to be computed, among which is the long-term growth rate λ (Caswell
1989, 2001; Stearns 1992). A matrix A = (ai j ) can be assembled, with ai j being
the contribution of an individual in age class i to age class j , from one time step to
the next. The nonzero entries of the matrix are the demographic parameters. The
population trajectory is obtained by iterating over time according to the recursion
equation

�N (t + 1) = A �N (t) , (3.1a)

where �N (t) = (N1(t), ..., Nn(t))T denotes the population vector at time t , and
Ni (t) the number of individuals in age class i ; there are n age classes. The pop-
ulation size at time t is N (t), the sum of the entries of the population vector. An
example of a general female-based matrix A is

A =

⎛
⎜⎜⎜⎝

σφ0b1 ... σφ0bn−1 σφ0bn

φ1 ... 0 0
...

. . .
...

...

0 ... φn−1 φ

⎞
⎟⎟⎟⎠ , (3.1b)

with φ0 being the juvenile survival rate, φ1, ..., φn−1 subadult survival rates, φ

the adult survival rate, and b1, ..., bn fecundities. The primary female sex ratio σ

(proportion of females at birth) is emphasized here as a parameter, the usual value
being σ = 0.5. When φ = 0, A takes the form of the so-called Leslie matrix. A
prebreeding census is assumed, since juvenile survival rate φ0 appears in matrix A
as a multiplicative factor of fecundities in the first row.

The main demographic result is that, after transitory damped oscillations, the
population enters a stable regime of exponential growth with rate λ, whatever the
initial population vector �N (0), where λ is the dominant eigenvalue of the matrix
A. The dynamics of the population depend entirely on the algebraic properties
of the matrix. Asymptotically, the population size N (t) is such that N (t + 1) ≈
λN (t). The celebrated Perron–Frobenius theorem of linear algebra ensures that
λ is real and positive. The population either increases exponentially (λ > 1),
which results in demographic explosion, or declines exponentially (λ < 1), which
results in population extinction. The degenerate case λ = 1 leads to equilibrium.
Convergence toward the asymptotic regime is geometric with rate 1/ξ , where ξ =
λ/|λ2| is the damping ratio, λ2 being the second eigenvalue of the matrix. The
period of the transient oscillations depends mostly on the angle formed by λ2 and
the real axis in the complex plane.

The population structure at time t ,

�W (t) =
(

N1(t)

N (t)
, ...,

Nn(t)

N (t)

)T

, (3.2)
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is the vector of the proportions of individuals in the various age classes. Except
for matrixes A with special structure [see Chapter 4 in Caswell (2001) for more
details], this vector converges toward a stable population structure �W , known as
the stable age distribution. The vector �W is the right eigenvector of matrix A cor-
responding to λ. The left eigenvector �V of the matrix corresponding to λ gives the
series of reproductive values indexed by age. These reproductive values describe
which age classes contribute most to population size when the asymptotic regime
is reached. More precisely, a population’s size is asymptotically given by

N (t) ≈ λt〈 �V , �W (0)〉N (0) , (3.3)

where the angular brackets denote the scalar product of vectors. Equation (3.4)
yields an estimator of the actual average growth rate until time t

λ̂ = exp

(
ln(N (t)) − ln(N (0))

t

)
. (3.4)

Another important quantity defined at the population level from individual life-
history traits is the generation time. There are various measures of generation time,
one being the mean generation length T , a weighted sum of the contribution of
each age class to offspring once the population has reached its asymptotic regime.
For the Leslie matrix, this gives

T =
n∑

i=1

i�(i)λ−i , (3.5)

with �(i) = σφ0φ1 ... φi−1bi .

Factors of population regulation and extinction
The model described above, based on a constant matrix A, can be viewed as a
deterministic skeleton upon which density-dependent factors and stochastic pro-
cesses will operate. Stochastic processes may be endogenous or exogenous:
demographic stochasticity and interaction stochasticity pertain to the first kind,
whereas environmental stochasticity and catastrophes are of the second kind (see
Box 2.1). For small populations, demographic stochasticity, which is unavoidable
and strictly dependent on population size, can become the main factor of extinc-
tion. The long-term growth rate λ of the deterministic skeleton model can always
be defined, but stochastic processes generate variation in the instantaneous growth
rate and population size. Predictors of the extinction risk, best described by the
distribution of time to extinction, typically involve measures of this variation. Usu-
ally, to obtain such measures requires intensive computer simulations, but a good
deal of mathematical theory is available to guide the simulations and interpret the
results (e.g., Ferrière et al. 1996; Mills et al. 1996; Fieberg and Ellner 2001).

Density dependence and stochastic factors that affect the population dynamics
can be considered, as a first approximation, to be perturbations of the above model,
and their respective influences can be assessed from the sensitivities of the growth
rate λ to changes in various parameters (Caswell 1989; Tuljapurkar 1990). When
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a parameter x is varied by an amount ε, the growth rate λ changes by an amount
εsλ(x), where sλ(x) = ∂λ/∂x is the sensitivity of λ to changes in x . When a
parameter x of the model is varied by η%, the growth rate λ changes by ηeλ(x)%,
where eλ(x) = (x/λ)sλ(x) is the elasticity of λ to changes in x . Thus, elasticity
is similar to sensitivity, but it takes the relative magnitude of the parameter change
into account. Sensitivities and elasticities enable us to determine those parameters
that have the greatest impact on population growth. However, sensitivities only
quantify the impact of small independent perturbations (see Mills et al. 1999).

With Var(ai j ) denoting the variance of temporal fluctuations of the correspond-
ing demographic parameter around its average value ai j , the variance in population
growth can be approximated by

Var(λ) ≈
∑
i, j

(
∂λ

∂ai j

)2

Var(ai j ) . (3.6)

Thus, the sensitivities to the demographic parameters act as weights to determine
the growth-rate variance from these parameters’ variance. The sensitivities are
therefore important determinants of the extinction risk. A powerful result from
Houllier and Lebreton (1986), which has been little appreciated to date, is the
following. With c denoting a common parameter that multiplies the fertilities in
the first row of A [for example, σ or φ0 in Equation (3.1b)], the elasticity with
respect to c is inversely proportional to generation time T , that is

eλ(c) = c

λ

∂λ

∂c
= 1

T
. (3.7)

This implies that short-lived species are more sensitive to fluctuations in fertility
parameters than long-lived ones. Conversely, long-lived species are, comparatively
speaking, more sensitive to fluctuations in the adult survival rate.

Density dependence arises from resource limitation (exogenous, such as food
or space, or endogenous, such as partners for reproduction), and results in demo-
graphic parameters being functions of the number of individuals in age classes. As
competition may involve different resources (food, territory, breeding sites), den-
sity dependence may differentially affect the various stages of a life cycle. Nega-
tive density dependence leads to extinction or regulation. In the latter case, com-
plex dynamics (quasi-periodicity, chaos) may occur (May and Oster 1976; Ruelle
1989). Notice that a longstanding common wisdom has been that large and unpre-
dictable fluctuations associated with chaotic dynamics should increase a popula-
tion’s vulnerability to extinction. In fact, chaotic population dynamics can result
from the operation of natural selection on life-history traits (Ferrière and Gatto
1993), and chaos may create enough asynchrony between local populations con-
nected by migration to promote long-term persistence at the regional scale (Allen
et al. 1993). Thus, no simple relationship exists between nonlinear dynamics, the
extinction risk, and adaptation (see Chapter 11).

Demographic stochasticity, which stems from the random realization of the life
cycle by each individual in the population, is modeled by specifying a multitype
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branching process based on the above matrix model (see Section 3.3). Under de-
mographic stochasticity, a population either goes extinct or grows at an average
rate λ. For λ ≤ 1 extinction occurs with certainty. For λ > 1 the probability of ex-
tinction is strictly larger than 0 and strictly smaller than 1; it depends on the initial
population size and structure, and decreases exponentially with initial population
size. More precisely, the probability of extinction at time t is

qe(t) = q1(t)
N1(0) ... qn(t)

Nn (0) , (3.8)

where qi (t) is the probability of extinction at time t when the initial population
consists of a single individual in age class i . The average population structure is
unaffected by demographic stochasticity. For λ < 1, conditional on being nonex-
tinct, the probability distribution of population size converges toward a constant
distribution, known as the population’s quasi-stationary distribution. As a conse-
quence, from one time step to the next, the population goes extinct with probabil-
ity 1 − λ, thus behaving like a single individual with survival probability λ. The
quasi-stationary distribution also exists when the population is regulated by den-
sity dependence, or is subject to uncorrelated environmental stochasticity: there is
a constant parameter β < 1 such that the population behaves as a single individual
with survival rate β (Gosselin and Lebreton 2000).

Under environmental stochasticity, demographic parameters may vary indepen-
dently of each other, or co-vary (e.g., a decrease in survival co-occurs with a de-
crease in fecundity), with or without temporal autocorrelations (Shaffer 1987; Tul-
japurkar 1990; Lande 1993; Chapter 2). The usual effect is to reduce the expected
growth rate, compared to the value that the growth rate would assume if all pa-
rameters were fixed at their average value. A stationary population structure is
not guaranteed. The ultimate probability of extinction is independent of the ini-
tial population size, but the average time to extinction increases with the initial
population size.

All of the above factors contribute to various extents to the risk of extinction.
For example, in their survey on translocations, Griffith et al. (1989) find that the
initial population size is a strong predictor of the extinction risk. The probability
of extinction decreases as the initial population size increases, and remains con-
stant above some population-size threshold. This is what is expected under the
combined effects of demographic and environmental stochasticity. Also, an ap-
preciation of how environmental stochasticity and density dependence combine is
crucial to forecasting the dynamics of natural populations accurately (e.g., Leirs
et al. 1997).

3.3 Effect of Sexual Structure on Population Viability
Demographic models usually describe the dynamics of the female population only.
However, for small populations, random fluctuations in sex ratio and pair forma-
tion may affect persistence (see Chapter 2). To account for the impact of sexual
reproduction on population viability, two-sex life cycles with interactions between
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sexes must be constructed. The pattern of pair formation (the social mating sys-
tem), appears to play an important role in extinction processes: for small pop-
ulations, the shortage of mates can generate an Allee effect because the female
population forms a limiting resource (Chapter 2; Courchamp et al. 1999; Legen-
dre et al. 1999; Stephens and Sutherland 1999; Stephens et al. 1999; Møller and
Legendre 2001).

Deterministic two-sex models
Models of two-sex life cycles can be constructed by duplicating the life-cycle
graph for males and females. Reproductive transitions from the female part of the
graph connect to both male and female parts; the relative contribution to each part
is measured by the primary female sex ratio σ , which means that female offspring
are produced in proportion σ and males in proportion 1 − σ .

In two-sex models, reproduction parameters become dependent upon the num-
ber of mating pairs that can form. Therefore, the mating system ought to be speci-
fied (Box 3.1) in terms of a “marriage function” or “mating function” (Caswell and
Weeks 1986; see also Heino et al. 1998). This mating function gives the number
M(Nm, Nf ) of matings as a function of the numbers Nm and Nf of reproductive
males and females. Mating models can be designed to account for fidelity, prob-
ability of encounter, and asymmetric preferences in males and females depending
on social status or age (Gerritsen 1980; Gimelfarb 1988; Castillo-Chavez and Hsu
Schmitz 1997). Considering only matings that yield offspring, we assume here
that the number of matings is less than the number of sexually mature females,
i.e., M(Nm, Nf ) ≤ Nf .

The mathematical properties of the mating function reflect the structure of en-
counters between sexes (Caswell and Weeks 1986; Martcheva 1999). One im-
portant property is homogeneity, which is the fact that, for any c ≥ 0, one has
M(cNm, cNf ) = c M(Nm, Nf ). If we define the breeding sex ratio ρ as the pro-
portion of reproductive females in the reproductive population, by virtue of the
previous homogeneity property, we have

M(Nm, Nf )

Nf + Nm
= M

(
Nm

Nf + Nm
,

Nf

Nf + Nm

)
= M(1 − ρ, ρ) . (3.9a)

Investigating the dynamics of two-sex models is greatly facilitated by considering
the following limit function µM , which is associated with the mating function M
for each value of σ in [0,1], and is given by

µM(σ ) = lim
ρ→σ

M(Nm, Nf )

Nf + Nm
= M(1 − σ, σ ) . (3.9b)

The limit function µM captures the main features of the mating system. It is 0 for
σ = 0 and σ = 1, and is usually concave with a single maximum (Figure 3.1).
Furthermore, for M(Nm, Nf ) ≤ Nf , Equation (3.9b) leads to µM(σ ) ≤ σ , which
entails that the graph of the limit function µM lies entirely below the main diago-
nal. Notice that the main diagonal coincides with the graph of the limit function
µM recovered when the number of mating paris is merely equal to the number of
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Box 3.1 Social mating systems

Several aspects of sexual selection are determined by the social mating system,
that is, the way males and females pair for reproduction (Orians 1969; Wade and
Arnold 1980; Arnold and Duvall 1994). There are four important mating systems
in animals:

Monogamy. A single male and a single female form a strong pair bond, usually
involving parental care by both partners. The monogamous mating system is very
common in birds (90% of all bird species). However, extra-pair copulations are
frequent and can lead to strong sexual selection (Møller and Birkhead 1994).

Polygyny. A single male mates with several females, who mate only with him.
Often, males provide nothing but gametes (e.g., lekking species), or they provide
little parental care, but rather territory or protection. Sexual dimorphism is often
correlated with the degree of polygyny (pinnipeds,
ungulates), an extreme example being that of ele-
phant seals, where males outweigh females by more
than five times. Harem sizes are typically 50 indi-
viduals, and a large proportion of males never re-
produce. Nevertheless, several monogamous species
are highly dimorphic. There are also examples of
species that switch between monogamy and polyg-
yny according to environment (e.g., Höglund 1996).
Monogamy and polygyny could coexist as alterna-
tive tactics (Pinxten and Eens 1990).

Polyandry. A single female mates with several males, who mate only with her.
This rare mating system occurs, for example, in the Dunnock Prunella modularis,
but polygyny and monogamy are also found in this species, depending on food
resources (Davies and Lundberg 1984).

Polygynandry. In this, the most common breeding system, each sex mates with
more than one member of the opposite sex. Polygynandry is frequent in mammals.
While the offspring require intensive parental care (e.g., female mammals produce
milk), the males provide no parental care in 95% of mammal species (Clutton-
Brock 1989).

females present in the population, M(Nm, Nf ) = Nf . In this case, the two-sex
model collapses to its one-sex, female counterpart. Figure 3.1 shows the shape of
the limit function µM for more complex maing systems:

� For the monogamous mating system, males and females pair one-to-one and
unpaired individuals do not reproduce. The mating function is M(Nm, Nf ) =
min(Nm, Nf ), and the corresponding limit function is µM(σ ) = min(1 −σ, σ ).
This function has a tent shape with a single maximum at σ = 0.5 (Figure 3.1a).

� For the polygynous mating system with harem size θ , a single male mates on
average with θ females, giving M(Nm , Nf ) = min(θ Nm, Nf ). The limit func-
tion is given by µM(σ ) = min(θ(1 − σ), σ ); it has a maximum, as expected at
σ = θ/(θ +1), corresponding to one male mating with θ females (Figure 3.1b).
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Figure 3.1 Limit functions for alternative mating systems. (a) Monogamy, (b) polygyny
with harem size θ = 2, (c) polygyny with unrestricted harem size (the filled circle indicates
that µM is discontinuous at σ = 1, with µM(1) = 0), (d) harmonic-mean mating function.

� For the polygynous mating system with unrestricted harem size, a single male
can mate with as many females as he is willing to. The number of matings is
equal to the number of females, except when there are no males, in which case
the number of matings is 0. The graph of the limit function coincides with the
main diagonal except for σ = 1, where µM is 0 (Figure 3.1c).

� The harmonic-mean mating function M(Nm,Nf )=min(2Nf Nm/(Nf+Nm),Nf )

can be seen as an intermediate pattern between monogamy and polygyny with
a harem size of 2. Indeed, each male mates on average with 2ρ females, with
ρ being the breeding sex ratio. The graph of the limit function consists of a
segment line and half of a parabola (Figure 3.1d).

Under rather general assumptions (the homogeneity property mentioned above
being crucial), the two-sex model behaves as the one-sex model, with an asymp-
totic exponential growth and a stable population structure (Caswell and Weeks
1986; Martcheva 1999). As a result, the realized sex ratio (the proportion of fe-
males in the population) stabilizes, as does the breeding sex ratio. As with one-sex
dynamics, two-sex dynamics can be decomposed into a transient regime followed
by an asymptotic regime of exponential growth. However, convergence toward the
equilibrium of the realized sex ratio interferes with convergence toward the sta-
ble age distribution, resulting in more complex transient dynamics than in one-sex
models. Incorporating density dependence or competition between mates can gen-
erate even more complex population dynamics (Caswell and Weeks 1986; Chung
1994; Lindström and Kokko 1998).
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Figure 3.2 Growth rate as a function of the primary female sex ratio for the one-sex model
and the two-sex model with monogamous mating function. The two curves coincide for
σ ≤ 0.5.

The two-sex expected growth rate, denoted by λM , depends on the mating func-
tion M and on the male and female parts of the age-specific life cycle. Assuming
that:

1. Males and females have identical survival rates,
2. Matings occur with equal probability among reproductive age classes,
3. A limit function µM can be associated to the mating function M [Equa-

tion (3.10b)],

the growth rate λM of the two-sex model with mating function M satisfies (Legen-
dre et al. 1999)

λM(σ ) = λ(µM(σ )) . (3.10a)

Thus, the two-sex growth rate is obtained by replacing the primary sex ratio σ in
the one-sex model with µM(σ ). Since the one-sex growth rate λ(σ ) is a continu-
ously increasing function of σ , Equation (3.10a) implies that the two-sex growth
rate is always less than, or at most equal to, the one-sex growth rate, that is

λM(σ ) ≤ λ(σ ) . (3.10b)

Thus, the maximum of the two-sex growth rate corresponds to the maximum of
the limit function µM (compare Figure 3.1a with Figure 3.2).

For life cycles that are sex-symmetric, i.e., satisfying assumptions 1 and 2
above, the breeding sex ratio ρ is equal to the primary sex ratio σ . However,
sex-asymmetric life cycles exist in many species, often in relation to polygamy. In
the polygynous mating system with harem size θ , the optimal breeding sex ratio
that maximizes the two-sex growth rate is ρopt = θ/(θ + 1), that is, θ females
per male. Assuming a balanced primary sex ratio, σ = 0.5, the optimal breeding
sex ratio can be achieved by reducing the number of reproductive males in several
nonexclusive ways:

� Males have lower (adult) survival rates,
� Males have delayed access to reproduction,
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� Only a fraction of mature males have access to reproduction.

All three cases are known to occur in polygynous species.

Influence of sexual reproduction on the extinction risk
The effect of demographic stochasticity on the viability of a sexual, age-structured
population can be investigated by constructing a branching process model based
on the two-sex life cycle and the mating function (Harris 1963; Athreya and Ney
1972; Asmussen and Hering 1983; Gabriel and Bürger 1992; Kokko and Ebenhard
1996; Hull 1998; see also Chapter 2). Numbers of individuals that result from life-
cycle transitions are drawn according to integer-valued probability distributions,
depending on the number of individuals in age classes. For “all-or-nothing” tran-
sitions – such as surviving or not, being born as male or female, being reproductive
or not – the number of individuals in the next age class is computed by summing
Bernoulli trials (one trial per individual) or, equivalently, by sampling binomial
distributions. For fecundity transitions, the number of offspring is computed as a
sum of trials according to, for example, a Poisson distribution with a mean equal
to the expected fecundity. For example, the two age-class matrix

A =
(

0 σ B
φ1 φ

)
(3.11)

leads to recursion Equations (3.12a) and (3.12b) from one time step to the next,

N1(t + 1) = Poisson(σ B) ∗ N2(t) , (3.12a)

N2(t + 1) = Binom(N1(t), φ1) + Binom(N2(t), φ) , (3.12b)

where Poisson(x) ∗ N denotes the sum of N samples of the Poisson distribution
with mean x , and Binom(N , p) denotes the sum of N Bernoulli trials of probabil-
ity p. The corresponding two-sex model is specified by the equations

J (t) = Poisson(B) ∗ M(Nm2(t), Nf 2(t)) , (3.13a)

Nf 1(t + 1) = Binom(J (t), σ ) , (3.13b)

Nm1(t + 1) = J (t) − Nf 1(t + 1) , (3.13c)

Nf 2(t + 1) = Binom(Nf 1(t), φ f 1) + Binom(Nf 2(t), φ f ) , (3.13d)

Nm2(t + 1) = Binom(Nm1(t), φm1) + Binom(Nm2(t), φm) . (3.13e)

Equation (3.13a) gives the number J of newborns produced according to the mat-
ing function M; Equations (3.13b) and (3.13c) split this number into males and fe-
males according to the primary female sex ratio σ ; Equations (3.13d) and (3.13e)
give the number of adult males and females that result from the survival of either
subadult males and subadult females, or adult males and adult females.



3 · Age Structure, Mating System, and Population Viability 51

Under the assumptions 1 to 3 above, the two-sex population under demographic
stochasticity either becomes extinct or grows on average at a rate λM , as in the
one-sex case. This behavior seems general, but theoretical results are still lack-
ing. Incorporation of both sexes and the mating system complicates the structure
of the transient dynamics, and possibly reduces the long-term growth rate as a
consequence. Thus, the two-sex branching process has a larger probability of ex-
tinction than the corresponding one-sex process, even when the two-sex growth
rate is equal to the one-sex growth rate.

Extinction probabilities and the distribution of extinction time turn out to be
highly dependent on the mating system. Real data – for passerines introduced to
New Zealand (Legendre et al. 1999), and bighorn sheep in North America (see
Section 3.4) – suggest that demographic stochasticity interacts with the mating
system to determine the extinction risk of small populations. Long-lived and short-
lived sexual species behave differently with regard to extinction because of the
stochasticity of the mating process, one reason being that the elasticity of λ to
changes in the primary sex ratio σ is inversely related to the generation time T
[see Equation (3.5)]. Differentiating Equation (3.10a) with respect to σ by the
chain rule,

∂λM/∂σ = (∂λ/∂µM)(∂µM/∂σ ) , (3.14)

shows that the sensitivity ∂λM/∂σ of the two-sex growth rate to changes in σ ,
and hence the probability of extinction, depends on the slope ∂µM/∂σ of the limit
function. As a result, the same growth rate can lead to different probabilities of
extinction depending on the mating system. For example, the monogamous mat-
ing function and the harmonic-mean mating function produce the same two-sex
growth rate when the primary sex ratio σ is balanced, but the smoothness of the
harmonic mean dramatically reduces the probability of extinction, as shown in Fig-
ure 3.3a. Furthermore, the value of σ that maximizes the growth rate and the value
of σ that minimizes the probability of extinction usually differ. For the polygynous
mating system with unrestricted harem size, the growth rate is maximized when
the primary sex ratio σ is close to 1 (Figure 3.1c), but the probability of extinc-
tion shows a different pattern. If the proportion of females is low, few offspring
are produced, and therefore the growth rate is less than 1 and extinction is cer-
tain. If the proportion of females is high, then the growth rate is large, but males
can go extinct. The extinction risk turns out to be minimum for an intermediate
value of σ , as shown in Figure 3.3b. Such contrasting effects of mating structure
on a population’s growth rate and extinction risk suggest that the adaptive evolu-
tion of sex-related life-history traits may have complex and unexpected effects on
population viability.

Sexual selection and extinction
Males and females have conflicting interests in reproduction, and as a consequence
natural selection operates differentially on each sex. This gives rise to sexual se-
lection (Darwin 1871; Fisher 1958; Andersson 1994). A general pattern is that
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Figure 3.3 Probability of extinction as a function of the primary female sex ratio σ , for
the two-sex model as specified in Section 3.3. (a) Monogamous mating system versus
harmonic-mean mating function: the smoothness of the harmonic mean reduces the prob-
ability of extinction (dotted curve). The initial population comprised 20 adult males and
20 adult females. Monte Carlo simulations involved 1000 trials run over 100 time steps.
(b) Polygynous mating system with unrestricted harem size: growth rate is maximal for
σ ≈ 1, while the probability of extinction is minimal for σ ≈ 0.66. The initial popula-
tion comprised five adult males and five adult females. Monte Carlo simulations involved
1000 trials run over 50 time steps. Parameters: φ1 = 0.3, φ = 0.5, B = 4.0; growth rate
λM(σ ) = 1.064 for σ = 0.5.

females (with a small number of large gametes) are under selection to increase
their reproductive success by searching for “good” males, while males can increase
their fitness by copulating with many females (as males have a huge number of tiny
motile gametes). This generally induces a larger variance in male reproductive suc-
cess (Bateman 1948; Wade and Arnold 1980), and promotes sexual dimorphism,
with the development of exaggerated ornaments, weapons, signals, or behaviors
far beyond the expected optimal under the action of individual selection. In ef-
fect, sexually selected species seem more prone to extinction (McLain et al. 1995;
Sorci et al. 1998). However, little theory deals with the impact of sexual selection
on demography, as most models pertain to the field of population genetics (Lande
1980a; Kirkpatrick 1982; Pomiankowski et al. 1991; Iwasa et al. 1991) or to game
theory (e.g., Maynard Smith 1982; Iwasa and Harada 1998), where, in both cases,
demographic structure is usually ignored.

Under sexual selection, the evolution of male and female life-history traits may
cause them to diverge, leading to sexual dimorphism. Sexual dimorphism on age
at maturity (bimaturism) or survival can result in a strongly skewed breeding sex
ratio. For example, in polygynous ungulates, adult males usually have lower sur-
vival rates than females; in the bighorn sheep, this difference yields a breeding
sex ratio ρ ≈ 0.80 (see Section 3.4). Results in this section suggest that sexual
structure could have a significant impact on persistence. Could the individual be-
havior that determines the structure of a mating system evolve concomitantly with
a reduced risk of extinction for the population? Evolutionary changes in sexual
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behavior may be tightly constrained, especially in species undergoing strong sex-
ual selection. While the evolution of life histories has been studied in detail, very
little is known of the effect of sexual reproduction and its evolution on population
dynamics and viability.

3.4 Interfacing Demography and Genetics
In small populations, genetic drift (the genetic equivalent of demographic stochas-
ticity) may beget the fixation of deleterious mutations (see Chapters 5 and 9).

American bighorn sheep
Ovis canadensis

Assessing the impact of genetic drift on vi-
tal rates and population viability requires
the development of integrated models that
interface demography and genetics (Lande
1994, 1995; Mills and Smouse 1994; Lynch
et al. 1995a). To this end, the approach
followed by Thévenon and Couvet (2002),
aims at tracking the population vector of
age-class frequencies and the genetic vec-
tor of allelic frequencies simultaneously,
while explicitly modeling interactions be-
tween the two. The so-called mutation load
that results from deleterious mutations (see
Chapter 9) affects the demographic param-
eters and therefore the population size and
structure, which in turn modify the genetic
composition of the population (Box 3.2). In
this approach, the effect of selection against deleterious mutation is accounted for
(see Chapter 10). In their seminal work, Mills and Smouse (1994) also describe
the combined effects of demography and genetics on the risk of population extinc-
tion, but selection was not part of their framework. Mildly deleterious mutations
appear to be the most harmful, because, unlike strongly deleterious ones, they are
not eliminated. Below, we illustrate these general considerations with a specific
example, that of the dynamics of the American bighorn sheep, Ovis canadensis.

The American bighorn sheep of the Rocky mountains is a polygynous species
that exhibits a strong sexual dimorphism. Females generally start to reproduce
when 2–3 years old. Males mature when 3.5 years old on average, but competition
between males usually means that they do not participate in reproduction until at an
older age. Adult male survival rates are lower than those of females. Senescence
starts after 7–8 years, and is more pronounced for males, but animals can live up
to 20 years. The bighorn sheep model is summarized in Table 3.1.

Demographic parameters used in the model come from the literature (Geist
1971; Monson and Sumner 1981; Festa-Bianchet et al. 1995; Jorgenson et al.
1997). Females and males start to reproduce at 3 and 5 years of age, respectively.
A polygynous mating system with harem size θ = 4 is used, matings being dis-
patched evenly between reproductive female age classes. The two-sex matrix is a
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Box 3.2 Inbreeding depression in structured population models

In a population, the fate of mutations depends on the initial allelic frequencies, the
mutation rate u (and reverse mutation rate urev), the selective pressures that elim-
inate deleterious genes, and genetic drift. For a given gene with wild and mutant
alleles, we denote by h the dominance of the deleterious allele, and by srepr and ssurv

the selection coefficients associated with reproduction and annual survival (juvenile
survival or adult survival), respectively. For given frequencies p and q = 1 − p of
the wild and mutant alleles, the expected frequency q ′

repr of the mutant allele after
reproduction is

q ′
repr = pq(1 − hsrepr) + q2(1 − srepr)

p2 + 2pq(1 − hsrepr) + q2(1 − srepr)
+ (up − urevq) . (a)

After one time step, the expected frequency q ′
surv of the mutant allele among surviv-

ing individuals is

q ′
surv = pq(1 − hssurv) + q2(1 − ssurv)

p2 + 2pq(1 − hssurv) + q2(1 − ssurv)
. (b)

The genetic composition of a population of N individuals is described by a genetic
vector � with 2N + 1 entries, in which the kth entry gives the probability of a
randomly chosen individual to have k mutated genes. Through reproduction N in-
dividuals produce N ′ offspring, among which the number of mutants is drawn from
the binomial distribution Binom(2N ′, q ′

repr), with q ′
repr given by Equation (a). The

resultant genetic vector �′ = Grepr(�, N ′, srepr) has 2N ′ + 1 entries. For survival, a
hypergeometric distribution is used with expectation q ′

repr, as given by Equation (b).
The mutation load G load(�, s) that affects survival and fecundity parameters is com-
puted according to

G load(�, s) =
2N∏
k=0

[(1 − hs)2pq(1 − s)q2 ]nL �k , (c)

where nL denotes the number of loci, �k is the kth entry of the genetic vector, and
s = srepr or ssurv depending on whether the affected trait is a fecundity parameter or
a survival parameter. The genetic vectors �(1) and �(2) of two sets of individuals
can be combined into a genetic vector � = Gcomp(�

(1), �(2)), where the operator
Gcomp is such that the kth entry of � is given by

�k =
∑
k1,k2

k1 + k2=k

�
(1)

k1
�

(2)

k2
. (d)

This associative composition can be extended to any number of genetic vectors.
For each age class i containing Ni individuals, there is a corresponding genetic

vector �(i) with 2Ni +1 entries. Likewise, for each life-cycle transition (i, j), there
is an associated intermediate population size N (i, j ) and an intermediate genetic vec-
tor �(i, j ) with 2N (i, j ) + 1 entries. From one time step to the next, the interactions
of genetics and demography are incorporated in the one-sex two-age class matrix(

0 σ B
φ1 φ2

)
according to the following scheme:

continued
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Box 3.2 continued

� Influence of genetics on demography. Compute the intermediate population
sizes N (i, j ), taking into account demographic stochasticity and mutational load,

N ′(2,1) = Poisson
(
G load(�

(2), srepr) × σ B
) × N2 ,

N ′(1,2) = Binom
(
N1, G load(�

(1), ssurv) × φ1

)
,

N ′(2,2) = Binom
(
N2, G load(�

(2), ssurv) × φ2

)
,

N ′
1 = N ′(2,1) ,

N ′
2 = N ′(1,2) + N ′(2,2) .

� Influence of demography on genetics. Update the intermediate genetic vectors
�(i, j ), taking the intermediate population sizes N ′(i, j ) into account, and compute
the resultant genetic vectors �′( j ),

�′(1,2) = Gsurv(�
(1), N ′(1,2), ssurv)

�′(2,2) = Gsurv(�
(2), N ′(2,2), ssurv)

�′(2,1) = Grepr(�
(2), N ′(2,1), srepr)

�′(1) = �′(2,1)

�′(2) = Gcomp(�
′(1,2), �′(2,2)) .

14 × 14 block matrix with the upper diagonal block standing for the male life cy-
cle, the lower diagonal block for the female life cycle, and the upper nondiagonal
block for the production of male offspring by females.

The two-sex growth rate is λM = 1.03. All female age classes have about the
same reproductive value. The differences in male and female life cycles mean
that the proportion of females in the population is 63%. The breeding sex ratio is
ρ = 0.81, close to the optimum value ρopt = 4/5 = 0.80 (see Section 3.3). In fact,
harem size has a significant impact on the growth rate, which underscores the im-
portance of the mating system on population persistence. The effective population
size, given by

Ne = 4Nm Nf

Nf + Nm
= 4Nmρ , (3.15)

is equal to 36% of the total population size, close to the estimated value of 33%
for bighorn populations in Wyoming (Fitzsimmons et al. 1997).

Demographic stochasticity is incorporated by treating by randomizing life-
cycle transitions and matings as stochastic processes, as explained in Section 3.3.
For simplicity, the initial populations are assumed to include individuals that be-
long to the oldest age class only, with 80% females and 20% males, close to the
stable proportion given by the deterministic model. Probabilities of extinction are
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Table 3.1 Parameters used in the bighorn sheep population model.

Demographic parameters
Males Females

Survival probabilities
Juvenile φm0 0.57 φ f 0 0.57
Yearlings φm1 0.86 φ f 1 0.83
Prime age φm2 0.86 φ f 2 0.94

φm3, φm4, φm5, φm6 0.78 φ f 3, φ f 4, φ f 5, φ f 6 0.94
Older φm 0.63 φ f 0.85
Fecundities b3, b4, b5, b6, b7 0.70

Population matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 0 Bm3 Bm4 Bm5 Bm6 Bm7

φm1 0 · · · 0 0 · · · 0
0 φm2 0
..
. φm3 0

..

.
..
.

..

.

φm4 0
φm5 0 0

0 · · · 0 φm6 φm 0 · · · 0
0 · · · 0 0 0 Bf 3 Bf 4 Bf 5 Bf 6 Bf 7

φ f 1 0 · · · 0
0 φ f 2 0

...
...

... φ f 3 0
...

φ f 4 0
φ f 5 0 0

0 · · · 0 0 · · · 0 φ f 6 φ f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Mating system
Number of reproducing females: Nf = Nf 3 + Nf 4 + Nf 5 + Nf 6 + Nf 7

Number of reproducing males: Nm = Nm5 + Nm6 + Nm7

Number of polygynous matings with harem size 4: M = min(4Nm, Nf )

Number of matings involving i-year-old females: Mi = M Nf i/Nf

Primary sex ratio: σ = 0.5
Number of 1-year-old males produced by i-year-old females: Bmi Nf i = (1 − σ)φm0bi Mi

Number of 1-year-old females produced by i-year-old females: Bf i Nf i = σφ f 0bi Mi

Genetic parameters
Dominance h = 0.2
Selection coefficient (reproduction) srepr = 0.01
Selection coefficient (annual survival) ssurv = 0.0017
Mutation rate u = 5 10−6

Reverse mutation rate urev = 5 10−7

Number of loci nL = 10 000
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Figure 3.4 Probability of extinction, cumulated over time, as predicted by the bighorn
sheep model. The initial population comprised 40 individuals; Monte Carlo simulations
involved 1000 trials.
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Figure 3.5 Probability of extinction, cumulated over time, for the bighorn sheep pop-
ulation. (a) Model results under the joint effects of demographic stochasticity, inbreeding
depression, and environmental noise. Monte Carlo simulations involved 1000 trials. (b) Ob-
served rates of extinction. Source: Berger (1990).

computed using Monte Carlo simulations that involve 1000 trials (Figures 3.4 and
3.5). Inbreeding depression was incorporated in the model as described in Box 3.2,
with the parameters given in Table 3.1. Accounting for the genetic load induces
a marked increase of extinction probability, as shown in Figure 3.4. Finally, envi-
ronmental noise is incorporated in the model: demographic parameters vary from
year to year according to probability beta distributions with means equal to es-
timated parameter values, and standard deviation fixed to 0.2. This extra noise
further increases the probability of extinction (Figure 3.4). Demographic stochas-
ticity, inbreeding depression, and environmental noise all have to be considered for
the estimated probabilities of extinction to match the real data shown in Figure 3.5.

3.5 Concluding Comments
Selective pressures that affect phenotypes and the viability of a population both de-
pend upon the structure of the individual life cycle. We have shown in this chapter
that both the age structure and the mating system – two important characteristics
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of a species’ life cycle – can have a dramatic impact on population viability. In a
conservation perspective, population structure and sexual structure correspond to
social bonds that management should take into account. For example, introducing
adults is, in many cases, a better strategy than introducing young, immature indi-
viduals (Sarrazin and Legendre 2000), and sustainable hunting pressures depend
on the breeding system (Greene et al. 1998; Wielgus et al. 2001).

Sensitivity analysis provides a powerful tool for estimating selection gradients
that act on life-history traits (Lande 1982; Benton and Grant 1999). Parameters
associated with higher sensitivities are under stronger selective pressures. In pop-
ulations subject to environmental stochasticity, the resulting adaptive changes are
expected to increase the deterministic growth rate and reduce the discount factor
that accounts for environmental variation [see Equation (3.7)]. This is expected
to reduce the extinction risk (Lande and Orzack 1988). The underlying theory,
however, does not account for density-dependent mechanisms that result from in-
teractions between individuals (see Chapters 2 and 11). Models that consider si-
multaneously the evolution of complex life cycles and population’s extinction risk
in a density-dependent context still need to be developed. One reason for the cur-
rent lack of such models is that, traditionally, evolution has been conceived as an
optimizing process, with the growth rate being maximized and the extinction risk
being minimized as a putative consequence. Chapters in Part C point to alternative
ways of thinking about the effect of life-history evolution on population dynamics.

Another aspect of individual responses to environmental change that must be
expected to impact population viability is phenotypic plasticity. Very little at-
tention has been paid so far to the effect of phenotypic plasticity on population
dynamics. The analysis of an age-structured model of a population of Drosophila
melanogaster contaminated by the C virus showed that the shortening of devel-
opmental time increases the growth rate, but could also increase the extinction
risk (Thomas-Orillard and Legendre 1996). This example suggests that the plas-
tic response of life histories to environmental threats may have contrasting and
intricate effects on population dynamics and viability. Phenotypic plasticity may
itself be adaptive, and study of the combined effects of plasticity and its evolution
on population dynamics in changing environments offers a further challenge to
eco-evolutionary theorists.
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