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abstract: It is well known that for an isolated population, the
probability of extinction is positively related to population size var-
iation: more variation is associated with more extinction. What, then,
is the relation of extinction to population size variation for a pop-
ulation embedded in a metapopulation and subjected to repeated
extinction and recolonization? In this case, the extinction risk can
be measured by the extinction rate, the frequency at which local
extinction occurs. Using several population dynamics models with
immigration, we find, in general, a negative correlation between ex-
tinction and variation. More precisely, with increasing length of the
time series, an initially negative regression coefficient first becomes
more negative, then becomes less negative, and eventually attains
positive values before decreasing again to 0. This pattern holds under
substantial variation in values of parameters representing species and
environmental properties. It is also rather robust to census interval
length and the fraction of missed individuals but fails to hold for
high thresholds (population size values below which extinction is
deemed to occur) when quasi extinction rather than true extinction
is represented. The few departures from the initial negative corre-
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lation correspond to populations at risk: low growth rate or frequent
catastrophes.

Keywords: metapopulation, extinction rate, population variability,
immigration rate.

How should variation in population size over time be
related to extinction rate? For an isolated population, one
might intuitively expect a positive relation between ex-
tinction and temporal variability in population numbers:
more variable populations should become extinct more
frequently (Inchausti and Halley 2003). This intuition is
bolstered by theory; stochastic variability in parameters as
formulated in some dynamic models (Tuljapurkar 1990;
Lande 1993; Foley 1994; Halley and Iwasa 1999; Hakoyama
and Iwasa 2000) increases extinction risk. However, in
these models, extinction is measured by probability of ex-
tinction or time to extinction, and the population is as-
sumed closed.

For a population belonging to a metapopulation, re-
peated extinction and recolonization occur locally. In this
case, extinction risk is estimated by an empirical quantity,
the extinction rate, the frequency at which local extinction
occurs. When the extinction risk is measured by the ex-
tinction rate—computed from the observed population
size time series—should we still expect a positive corre-
lation between extinction risk and population size varia-
tion? This is a question of conservation interest because
temporal variability in population numbers can be mea-
sured and can potentially be used to assess the risk of
extinction. In fact, the empirical answer to the above ques-
tion is uncertain. While data on birds support a positive
relation (Karr 1982; Pimm et al. 1988; also see Tracy and
George 1992; Vucetich et al. 2000), data on mammals
(Lima et al. 1996) and spiders (Schoener and Spiller 1992)
support a negative relation. Could such taxonomic dif-
ferences hint at an underlying mechanistic explanation, or
is there some axis along which the studies divide that is
mainly methodological?
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In the relationship between population size variability
and metapopulation dynamics (Hanski and Gilpin 1997;
Lecomte et al. 2004), two important parameters have been
found in theory to influence deeply metapopulation ex-
tinctions: connectivity (or immigration-emigration rate)
and pattern of environmental fluctuation (Heino et al.
1997; Ylikarjula et al. 2000; Hanski 2001). Morris and
Doak (2002) propose the following classification. For high
dispersal rates, individuals mix among sites, and the meta-
population can be considered a single population. For low
to medium dispersal rates, the metapopulation viability
depends on correlation in population size variation among
sites. In the case of low or negative correlation, migrants
from populated patches can rescue declining or extinct
patches in their vicinity, whereas positive correlation en-
tails the risk of coextinction. It is difficult, however, to test
this theory qualitatively (Lecomte et al. 2004) and to com-
pare its predictions quantitatively to actual extinction rates
because few species have been studied in a metapopulation
framework (Inchausti and Halley 2003). At the local scale,
predictions of extinction risk obtained from viability anal-
ysis and derived from population size estimates might be
flawed because (1) immigration can act as a rescue effect,
especially when temporal variability is not spatially cor-
related (Hanski and Gilpin 1997), and (2) the species life
cycle might itself entail population size variation (Schoener
et al. 2003) without necessarily contributing much to ex-
tinction (Gaillard et al. 2000). Moreover, as Inchausti and
Halley (2003) point out, variability in demographic pa-
rameters is not the same as variability in population size,
the latter being a derived quantity. Finally, those species
with large fluctuations in population size might also be
those having the largest dispersal rate (Clobert et al. 2004),
that is, immigration rate.

In this study, we use several population dynamics mod-
els incorporating immigration to generate time series from
which both extinction rate and population size variation
are computed. The surprising result is that for a local
population subjected to repeated extinction and immi-
gration, there is a generic pattern linking variation and
extinction along time: a strong negative relation is replaced
by a weaker positive one as observation time progresses.
Thus, under biologically realistic assumptions on popu-
lation dynamics and observation conditions, for a local
population supplemented by immigration, more variation
is generally associated with less extinction. We show that
this pattern is usually preserved under a range of variation
in (1) intrinsic properties of species (e.g., growth rate,
immigration rate, and age structure), (2) environmental
parameters (e.g., magnitude of environmental stochasticity
and strength and kinds of density dependence), and (3)
methodological properties (e.g., frequency of observation

and likelihood of missing various fractions of individuals
actually present).

Methods

Measure of Variation in Population Size

Several measures are possible (see Schoener and Spiller
1992). Here we used the coefficient of variation of pop-
ulation size with zeros excluded (CVZ; this measure be-
haves in a way similar to that of most other proposed
measures; see “Results”). In our models, population size
along time, , is an integer and is 0 when extinctionn(t)
occurs. We denote by the number of zeros amongz(t)

, that is, the number of dates such thatn(t) t ≤ t n(t) p
. The CVZ is computed by taking the series of population0

sizes up to time t, removing the 0 values of this series (in
), and computing the coefficient of variation (CV; stan-z(t)

dard deviation over mean) of the resulting series.

Measure of Extinction Rate

Let denote the number of extinction events up to time�(t)
t, that is, the number of dates such thatt ≤ t n(t � 1) 1

and . The extinction rate at time t is defined0 n(t) p 0
as

�(t)
if n(t) p 0

t � 1 � z(t)
E(t) p .

�(t){ if n(t) 1 0
t � z(t)

For example, suppose the series is 00XXXX0X0 (where X
indicates a nonzero population size). There are five
chances to observe extinction, and it is observed twice, so
the frequency of extinction is (first case). Now suppose2/5
the series is 00XX0XX0X. There are four chances to ob-
serve extinction, and it is observed twice, so the frequency
is (second case). The measure is identical to that used2/4
by Schoener and Spiller (1992).

Measure of Colonization Rate

Let denote the number of colonization events up toi(t)
time t, that is, the number of dates such thatt ≤ t

and . The colonization rate at timen(t � 1) p 0 n(t) 1 0
t is defined as

i(t)
if n(t) p 0

z(t) � 1
I(t) p .

i(t){ if n(t) 1 0
z(t)
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Quasi Extinction

The preceding definitions can be extended to the case of
quasi extinction (Inchausti and Halley 2003), in which
population size is compared to an extinction threshold H.
Quasi extinction occurs when population size !H. The
function can be replaced by , the number of datesz(t) z (t)H

such that (instead of ). In this case,t ≤ t n(t) ! H n(t) ! 1
“zeros excluded” means “populations sizes !H excluded.”
Similarly, the function can be replaced by , the�(t) � (t)H

number of dates such that andt ≤ t n(t � 1) ≥ H n(t) !

.H

Basic Simulation Assumptions and Procedures

We assume that initial population size is 0 individuals
(individuals first enter the population by immigration) and
(to remove the initially transient behavior) that the pop-
ulation is observed from some date . This assump-t k 01

tion corresponds to the natural situation of a population
that started with 0 individuals in the past at time 0 and
then arose by immigration and was subjected to its own
dynamics shaped by the local environment. We now ob-
serve this population at time t1.

Measures of population variation (V) and extinction
rate (E) are computed from time t1, when we start ob-
serving the population. We use . In fact, thet p 1,0001

value of t1 has no effect on the results, provided that it is
large enough that the initial condition has been forgotten
by the dynamical system. Also, because initial population
size is 0, some immigration is expected to occur before
time t1, requiring immigration rate . Wei 1 1/t p 0.0011

plot E versus V for 1,000 trajectories of the model and
compute the regression line (fig. 1). Let be the slopea(t)
of the regression line (V, E) at observation time t (i.e., at
time ). We are interested in the behavior oft p t � t1

along time. This kind of plot, the variation/extinctiona(t)
relationship, represented by along time, is hereaftera(t)
called the VE relation. Most of our results are expressed
in this format.

Models

We study the VE relation for several models with increasing
realism and complexity.

1. Patch occupancy model. We first consider a stochastic
patch occupancy model, where we observe a single patch
colonized with constant probability i and becoming extinct
with constant probability e. The occupancy of the patch
along time is

Ber(1 � e) if o(t) p 1
o(t � 1) p , (1){Ber(i) if o(t) p 0

where denotes a sample of the Bernoulli distri-Ber(m)
bution with mean m. For this model only, we use the
empirical variance at time t as a measure of variation (the
CVZ cannot be used). In this model, there is variation in
patch occupancy along time but no variation in population
size.

2. Expanded patch occupancy model. This model modifies
the previous one to allow for minimal population size
variation:

Ber(1 � e) � Ber(i) if p(t) ≥ 1
p(t � 1) p . (2){Ber(i) if p(t) p 0

Here population size is 0, 1, or 2. The parameter i is the
probability of immigration of a single individual (and not
the probability of colonization; immigration can occur at
any time), and e is the probability of extinction.

3. Continuous-time population dynamics model. We use
the logistic birth-death process (Lambert 2005) with im-
migration. This model accounts for demographic sto-
chasticity by construction and incorporates density de-
pendence to avoid population explosion. Population size
varies along continuous time according to the rules

n r n � 1 with rate bn � i,

n r n � 1 with rate dn � cn(n � 1), (3)

where b is the birth rate, d the death rate, and thei 1 0
probability of immigration. Competition is parameterized
by the coefficient (each of the n individuals competec 1 0
with others). The corresponding carrying capacityn � 1
is . The process is simulated (algorithmQ p 1 � Fb � dF /c
of Gillespie [1976]) by drawing the occurrence time Ds of
each next event from the exponential distribution with
parameter . An indicatora(n) p bn � dn � cn(n � 1) � i
x is then drawn from the uniform distribution with mean
a to determine the type of the event. According to the
value of x, the event is birth ( ), death (x ! bn bn ! x !

), competition entailing death (bn � dn bn � dn ! x !

), or immigration of a single individ-bn � dn � cn(n � 1)
ual ( ), with this latter event beingbn � dn � cn(n � 1) ! x
independent of population size.

We observe the continuous-time process in discrete time
t by sampling the continuous trajectories with step Dt. The
extinction rate and measure of variation are com-E(t) V(t)
puted from the samples of the continuous trajectories. The
immigration probability is constant, but now the extinc-
tion probability is not given a priori; it is determined by
the population dynamics process, in which immigration
occurs continuously.

4. Discrete-time population dynamics model. The model
has the general form
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Figure 1: The variation/extinction relation. Regression line of extinction rate (ER) on the coefficient of variation of population size with zeros
excluded (CVZ) at observation time 100 (squares), 500 (diamonds), and 1,000 (triangles), computed for 100 trajectories of the reference model (the
discrete-time population dynamics model, with parameters as in table 1). A negative relationship turns into a positive one as time elapses.

n(t � 1) p ln(t),

where l is the growth rate. Environmental stochasticity,
demographic stochasticity, density dependence, and im-
migration are incorporated as follows (Schoener et al.
2003).

a) Environmental stochasticity. The stochastic growth
rate lv is drawn from a normal distribution N with mean
the natural growth rate l and standard deviation v (the
distribution is truncated to ensure nonnegative values):

l { max (N(l, v), 0).v

b) Demographic stochasticity. The number of individuals

at the next time step is computed by summing n samples
of the Poisson distribution with mean lv:

n(t � 1) p Poisson(n(t), l ).v

c) Density dependence. The regulated population size nQ

is computed as

2Q
if n(t) 1 Q

n(t)
n (t) p .Q {

n(t) if n(t) ≤ Q

This means that as soon as population size n goes above



286 The American Naturalist

Table 1: Parameters of the discrete-time population dynamics model

Parameters Reference value Parameter space

Species properties:
Growth rate l 1.1 [.8, 2.0]
Immigration rate i .02 [.001, 1.0]
Age structure No Five and nine age classes

Environmental properties:
Standard deviation on environmental stochasticity v .3 [.001, 1.0]
Catastrophe frequency pcata 0 [0, .5]
Population ceiling Q 1,000 [10, 5,000]

Sampling procedure:
Observation date t1 1,000 [0, 5,000]
Initial population size n0 0 [0, 100]
Sampling interval D 1 [0, 100]
Proportion of individuals observed pobs 1 [0, 1]

the population ceiling Q, it is set equal to Q times the
proportional overshoot .Q/n

d) Immigration. At each time step, a single individual
can enter the population with probability i.

The basic relation obtained using the above assumptions
is

n(t � 1) p Poisson(n (t), l ) � Ber(i), (4)Q v

with parameters l, v, Q, and i. We use this final discrete-
time approach (model 4) to further explore how variations
in the parameters affect the VE relation. More precisely,
we consider variations of a reference model where the
parameters l, v, Q, and i are assigned biologically realistic
values (table 1). The variations can be grouped under three
headings: (1) intrinsic species properties, (2) properties
with a strong environmental component, and (3) obser-
vation properties. To model age structure, we use the life
cycle approach of Schoener et al. (2003), expanding model
4 to include five or nine age classes.

Results

Patterns of the VE Relation for the Different Models

For the patch occupancy model (model 1), we find that
for (patch more often occupied than empty), the VEi 1 e
relation is positive. For (patch more often empty thani ! e
occupied), there exists an expected time such that the∗t
VE relation is positive for and negative for∗ ∗t ! t t 1 t
(fig. 2A). The value of decreases with e or i increasing∗t
and increases with the disparity in e and i. It is small for
biologically realistic values of immigration and extinction.
This first model shows the possibility of the negative re-
lationship between variation and extinction, and this oc-
curs only when the extinction rate is larger than the col-
onization rate. However, this model allows for variation
only in patch occupancy and not in population size.

The expanded patch occupancy model (model 2),
though similar to the patch occupancy model, yields a
different pattern for the VE relation. Under biologically
realistic values of e and i, as given by the bold line with
circles in figure 2B, the VE relation along time begins
negative, decreases toward more negative values, and then
increases toward 0. For large values of e and i in the
expanded patch occupancy model, we observe the same
alternative as in the patch occupancy model: the VE re-
lation is negative when and positive otherwise.e 1 i

In the more realistic continuous-time population dy-
namics model (model 3) and in the discrete-time popu-
lation dynamics model (model 4), we observe a pattern
for the VE relation (fig. 2C, 2D), and this pattern is very
similar to that of the case of the expanded patch occupancy
model, though there is very little population variation in
this model. Except for the patch occupancy model (not a
population dynamics model), all models give a generic
pattern for the VE relation: population size variation and
extinction rate appear negatively correlated on a short
timescale, positively correlated on a long timescale, and
uncorrelated on a very long timescale.

Deviations from this generic pattern are consistent in
the continuous- and the discrete-time population dynam-
ics models. In both models, (1) the VE relation is strictly
positive when the immigration rate is very high (also a
feature of the first two models), and (2) the VE relation
is initially positive when the growth rate is !1 ( inb ! d
fig. 2C; in fig. 2D).l ! 1

Moreover, the VE relation pattern is independent of the
measure used for population size variation. Using model
4, the VE relation was compared for the seven measures
of population variation considered by Schoener and Spiller
(1992) for data on island spiders. Except for the CV, all
measures give the decrease/increase/decrease pattern (fig.
A1 in the online edition of the American Naturalist). When
population size is often 0, as is the case in this study, it
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seems appropriate to exclude zeros, and this has in fact
been recommended by McArdle et al. (1990). In particular,
the CV (zeros not excluded) does not seem a good mea-
sure; indeed, Schoener and Spiller (1992) reported that it
is the sole measure giving only positive values of the VE
relation (the only two other positive values in their study
were for CV1, the only other measure positive for small
t). Using model 4, we now explore how the VE relation
behaves when demographic, environmental, or sampling
characteristics of the process are varied.

Species Properties

Growth rate (l). The general pattern for the VE relation
is conserved for different values of l (fig. 3A). When

, the VE relation is positive on a short timescale andl ! 1
negative at all other timescales. As l increases, the relation
achieves less negative values and flattens out. For large l,
the relation appears entirely flat because as population size
never goes to 0, the extinction rate (ER) cannot be
computed.

Immigration rate (i). The effect of decreasing immigra-
tion rate below the reference ( ) is a shift of thei p 0.02
pattern to the right (fig. 3B). The effect of moderately
increasing immigration rate ( ) is a shift of thei p 0.05
pattern to the left, but when the rate is very high (i p

), the VE relation is flat.0.5
Age structure. The models of Schoener et al. (2003) for

the orb spiders Metepeira datona (five age classes) and
Argiope argentata (nine age classes) were adapted to this
study. For each age-classified model, we build the corre-
sponding model without age structure, with appropriate
parameters l, v, Q, and i (fig. A2 in the online edition of
the American Naturalist). In both cases, the match is quan-
titatively not very good, but it is qualitatively similar.

Environmental Properties

Environmental stochasticity (standard deviation v). For large
environmental noise (large v), the VE relation is positive
on short timescales (fig. 3C); this is analogous to the case
of small l (fig. 3A) because the realized growth rate is !1
for large v. For , the VE relation is flat because veryv p 0
little extinction occurs. We checked that the degree of au-
tocorrelation in environmental disturbance had very little
effect on the general pattern (fig. A3 in the online edition
of the American Naturalist).

Catastrophes (pcata). Catastrophes were investigated by
superimposing them onto environmental stochasticity.
They occur with probability pcata, and when a catastrophe
occurs, population size is set to 0. The effect is that the
VE relation becomes positive on short timescales, and this

effect increases with increasing catastrophe frequency (fig.
3D). (Note that in the reference model, .)p p 0cata

Population ceiling (Q) and density dependence. For small
Q, we observe an amplification of the VE relation (it is
more negative on short timescales and more positive on
large timescales; fig. 3E). Furthermore, we checked that
changing the functional form of density dependence (un-
der- or overcompensatory) did not influence the general
pattern (fig. A4 in the online edition of the American
Naturalist).

Sampling Properties

Observation time (t1). Figure 4A shows the VE relation
from different dates of first observation, t1, with initial
population size 0 (note that the reference model has

). We see that the general pattern exhibited byt p 1,0001

the VE relation is not affected much by the date t1, even
when . Figure 4B shows that irrespective of initialt p 01

population size ( or ), the VE relationn(0) p 0 n(0) p 100
is similar when the population is observed from time

and . In contrast, if the populationt p 1,000 t p 5,0001 1

is observed from time , a small change in initialt p 01

condition ( instead of ) has a large im-n(0) p 1 n(0) p 0
pact on the VE relation.

Sampling interval (D). Natural populations are often
censused at time intervals that are larger than the time
step one would use in modeling. For example, orb spider
censuses in the Bahamas were conducted on a yearly basis,
while the chosen time step for modeling the species was
14 days (Schoener et al. 2003). In this case, the sampling
interval was ( ). The effect of in-D p 26 14 # 26 ≈ 365
creasing D (poorer sampling than the reference model) is
to flatten out the general pattern on short timescales and
to amplify it on large timescales (fig. 4C). The curves of
the VE relation cross the X-axis at a single point (at t ≈

). For comparison, figure 4D gives the effect of the500
sampling interval on the VE relation for the continuous-
time population dynamics model (model 3). In this case,
the effect of increasing the observation interval D is a shift
of the curves to the left. When changing the sampling
interval for the continuous process, time is like an elastic
band that stretches as the sampling interval decreases.
Thus, sampling does not bear the same meaning in discrete
time as in continuous time; in the former, the time unit
is determined by the life cycle, and in the later, the time
unit must be specified.

Proportion of individuals observed (pobs). In natural pop-
ulations, not all individuals may be observed; this can lead
to a false designation of extinction, among other things.
If pobs is the probability of observing an individual, the
number of individuals observed at time t is drawnn (t)obs

from according to the binomial distribution with pa-n(t)
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Figure 2: The variation/extinction (VE) relation along time (log scale) for different models (1,000 trajectories in each case). A, Patch occupancy
model. The VE relation is always positive when the colonization probability i is larger than the extinction probability e, (triangles; ,i 1 e i p 0.02

). The VE relation is positive up to some specific time and then negative when (bold line; , ). B, Expanded patche p 0.01 i ! e i p 0.02 e p 0.05
occupancy model. The VE relation is negative in general (bold line; , ; triangles; , ) but positive for large extinctioni p 0.02 e p 0.05 i p 0.2 e p 0.5
probability e and large immigration probability (crosses; , ). C, Continuous-time population dynamics model (bold line; birthi 1 e i p 0.5 e p 0.1
rate , death rate , population ceiling , immigration probability ; growth rate !1: , ; largeb p 0.105 d p 0.10 Q p 100 i p 0.002 b p 0.10 d p 0.11
immigration probability: ). D, Discrete-time population dynamics model. The bold line corresponds to the reference model (table 1). Thei p 0.02
reference case (circles) and the cases of growth rate !1 (triangles; ) and large immigration probability (crosses; ) are similar in thel p 0.8 i p 0.2
discrete- and continuous-time models.

rameter pobs. This bias (poor sampling) amplifies the VE
relation (fig. 4E).

Discussion

We find a general pattern for the slope of the regression
of extinction rate against temporal population variability
(the VE relation). As the length of the time series increases,
the slope first decreases, then increases, and then decreases
again. It typically begins negative, eventually becoming
(relatively weakly) positive as time increases. The VE re-
lation is an observed relation. In this study, models were
used to generate population trajectories, and the quantities
leading to the VE relation—extinction rate and measure
of population variation—were computed from these sim-
ulated trajectories. We infer that on a realistic timescale,
the relationship of population size variation to extinction
computed from observed time series should generally be
negative.

Previous and Present Explanations for
a Negative VE Relation

As reviewed by Inchausti and Halley (2003), the negative
relation between extinction rate and temporal variability
in population size is, at first glance, counterintuitive. Al-
though some dismiss the negative empirical result as
largely a statistical artifact (Vucetich et al. 2000), others
take it at face value and relate it to reduced variability of
small populations (Schoener and Spiller 1992; Pimm 1993)
or to short time series (Inchausti and Halley 2003). Pimm
(1993, p. 46) further argues that “high extinction rate re-
stricts variability and progressively so at lower densities.”
Pimm (1993) correctly points out that there are mathe-
matical limits on the maximum variability that popula-
tions with a given mean can attain. However, our models
neither (1) show a progressive restriction of variability with
population size nor (2) predict that high extinction rate
restricts variability to the extent that it has much effect
on the VE relation. With respect to point 1, in addition
to the small effect of the population ceiling (fig. 3E), plots
of population size variability give unimodal relations (fig.

5A, 5B). Point 2, that high extinction rate restricts vari-
ability in general, is also highly suspect. In figure 5A, CVZ
versus MZ (mean with zeros excluded) is plotted for three
values of the immigration rate at time 1,000: i p 0.2
( ), (reference model; ),ER p 0.0023 i p 0.02 ER p 0.0193
and ( ). Very different ER valuesi p 0.002 ER p 0.2636
lead to similar variability, and the smallest ER value
( ; fig. 5A, black triangle) is associated with smaller,i p 0.2
not larger, variability. Again, the peak variability is for quite
intermediate means. These results show that previous ex-
planations of the negative relation of extinction rate to
population size variability are largely incorrect.

What, then, is the explanation? It can be proved (ap-
pendix in the online edition of the American Naturalist)
that as time t becomes large, the extinction rate , theE(t)
colonization rate , and the empirical variance in pop-I(t)
ulation size approach respective constants, and so does the
CVZ (fig. 6A; when catastrophes are present, convergence
is very slow; see fig. 6B). This explains why the VE relation
eventually goes to 0. Indeed, the covariance

has the same sign as the VE relation.Cov (CVZ(t), ER(t))
As , , , the covariance convergest r � CVZ(t) r v ER(t) r e
to 0, and the regression line goes through a single point
and therefore has slope 0. The behavior of the VE relation
before time becomes large is less transparent, and we pro-
vide here only a heuristic explanation.

In this explanation, we consider the whole set of pop-
ulation trajectories and use the empirical mean with zeros
excluded at time t, . First, note that the ER is neg-MZ(t)
atively related to the MZ at any time t and that populations
with a small MZ have a high ER, while populations with
an intermediate or a large MZ have a low ER (fig. A5 in
the online edition of the American Naturalist). When we
start observing the process (at time t1), CVZs are rather
low because the population has not had much time to
range over the full variability possible. Next, observe that
the relation of MZ to the population size variability CVZ
has a single maximum (fig. 5A, 5B). It can be proven that
for a process with values in {0, 1}, the relation of thex(t)
empirical mean to the empirical variance isM(t) V(t)

, a parabola with a maximum at .V ≈ M(1 � M) M p 1/2
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Figure 3: The variation/extinction (VE) relation along time (1,000 trajectories of the reference model). Effects of species and environmental properties.
A, Varying the growth rate l. B, Varying the immigration rate i. C, Varying the standard deviation of environmental stochasticity v. D, Catastrophes
added with frequency pcata. E, Varying the population ceiling Q.

For a process with values in {0, 1, …, K}, there is still a
single maximum. As time elapses, this gives three kinds
of populations across trajectories: (1) intermediate MZ,
high CVZ; (2) large MZ, small CVZ; and (3) small MZ,
small CVZ. When these populations are arranged on a
plot of ER versus CVZ, a triangular relation and a tendency
toward a negative slope are obtained (fig. 5C). As time
further progresses, populations tend to average larger; in
particular, category 3 dwindles away. This gives a weakly
positive slope in figure 5C. In this explanation, it is nec-
essary to distinguish the current (instantaneous) state of
a trajectory from its history since time t1; the empirical

quantities MZ, CVZ, and ER computed from time t1 pre-
sent transient behavior before stabilizing to their respective
constants. It can be shown that as time increases, the frac-
tion of trajectories currently with 0 individuals becomes
roughly constant. But to keep the fraction of 0 populations
constant, populations must become extinct at a definite
rate. However, when a formerly large population becomes
extinct, it still has large MZ because MZ is computed over
the entire trajectory that has elapsed since t1. The large
values that such a population had in the past prevent it
from being a population with a small MZ, and therefore,
the fraction of populations with a small MZ declines.
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Figure 4: The variation/extinction (VE) relation (1,000 trajectories of the reference model). Effects of sampling properties. A, The population is
observed from time , 100, 1,000 (reference model), and 5,000. The general pattern is not affected much by the date t1 at which the populationt p 01

is observed. B, The cases and , observed from time , show the substantial impact of population size on the VE relationn(0) p 0 n(0) p 1 t p 01

when the first observation date t1 is small. In contrast, the initial condition makes little difference when the first observation date t1 is large
( , , 5,000). C, Sampling interval D using the discrete-time population dynamics model. D, Sampling interval D using then(0) p 100 t p 1,0001

continuous-time population dynamics model (parameters as in fig. 2C). E, Probability pobs of observing an individual.

Change in Population Size Variability
with Increasing Time

Inchausti and Halley (2001, 2002) conclude from their
review of earlier studies and analysis of the global popu-
lation dynamics database (GPDD) that temporal variability
in population size increases over time. The GPDD has
more than 4,500 data sets longer than 10 years (or gen-
erations), of which Inchausti and Halley (2001) used 544
data sets that were annually censused or otherwise counted
for more than 30 years (median 46.5 years; maximum 157
years). In 96.9% of cases, the increase decelerates with time

series length, but in most cases, “variance fails to exhibit
an overall tendency to converge to any limit” (Inchausti
and Halley 2001, p. 656).

Our simulations for the reference model (fig. 6A) have
CVZ increasing up to , after which it plateaus att ≈ 1,000
a somewhat lower value. The CVZ plateaus very late when
catastrophes are added (fig. 6B).

Two interpretations of our models can explain the ten-
dency for population size variability to increase with time
series length, as shown by Inchausti and Halley (2001).
The first interpretation is that all series examined by In-



Figure 5: A, The relation of mean population size with zeros excluded (MZ; log scale assuming ) to population variation with zeroslog (0) p 0
excluded (CVZ) for three values of the immigration rate: (filled triangles), (circles), and (crosses), using the referencei p 0.2 i p 0.02 i p 0.002
model at time 1,000 (1,000 trajectories; each point corresponds to a trajectory). B, As in A, 1,000 trajectories of the reference model at times 10,
100, 500, and 1,000. C, Schematic representation of the CVZ-ER correlation for short to moderate time series; a negative slope is observed. As the
length of the time series increases, the number of populations in the top left portion of the plot decreases, giving a mildly positive slope.
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Figure 6: A, The variation/extinction (VE) relation, the extinction rate (ER), the immigration rate (IR), and population size variation with zeros
excluded (CVZ) along time (average over 1,000 trajectories of the reference model). Roughly, the VE relation is negative when and positiveER 1 IR
otherwise. B, The CVZ along time for the reference model with catastrophes added (probability ) compared to the usual reference modelp p 0.1cata

(average over 1,000 trajectories for each).

chausti and Halley (2001) are shorter than our value
( ) at which the CVZ begins to decline. Assumingt p 1,000
that the units of the GPDD time series used by Inchausti
and Halley (2001) correspond to the units of our model,
this would be so. However, if there were numerous gen-
erations per year, it would not be so. Indeed, in our study
of extinction in spiders (Schoener et al. 2003), there are
26 time units (about two generations) per year, so t p

corresponds to about 40 years, well within the range1,000
of the GPDD data. In that case, the second interpretation
is necessary: catastrophes (fig. 6B) must be invoked to
explain a persistent increase in population variability as

time series length continues to increase. Infrequent catas-
trophes may, in any event, occur in natural systems and
generally contribute to a population’s increase in vari-
ability over time, but they are, in fact, not necessary to
give this increase for shorter time series in our models.

Related to temporal variability in population size is
spectral reddening, a tendency for low (or high) abun-
dances to be temporally autocorrelated. The larger the
spectral exponent, the faster the increase of population
variability with the length of the time series (Inchausti and
Halley 2001, 2002). The spectral exponent (computedn

as minus the regression slope of log spectral density against
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log frequency) has a mean value of 1.022 ( )SD p 0.025
and ranges from about �0.3 to 2.5 in the GPDD data
analyzed by Inchausti and Halley (2003). In our study, the
reference model has . The reference model withn ≈ 1.1
catastrophes added ( ) has , and the age-p p 0.1 n ≈ 1.3cata

structured models for the spiders Metepeira and Argiope
have also. Thus, our models are well within then ≈ 1.3
amounts of spectral reddening observed in natural pop-
ulations (Inchausti and Halley 2002, 2003) as well as in
other models (Akčakaya et al. 2003). Our model also shows
the expected increase in the spectral exponent with au-
tocorrelation of stochastic noise in the growth parameter
l. For mild autocorrelation, , and for strong au-n p 1.3
tocorrelation, . This is expected if the autocorre-n p 1.5
lation in l is positively related to the autocorrelation in
population size (see also Vucetich et al. 2000).

VE Sensitivity to Model Structure and Parameter Values

Exceptions to the negative slope for short timescales occur
when the population is at relatively great risk, including
growth rate !1 (fig. 3A), low immigration rate (fig. 3B),
large environmental noise (fig. 3C), and high frequency
of catastrophes (fig. 3D). The slope can also be positive
at all timescales, including short ones, when ER is very
low, immigration rate is very high, or environmental noise
is very high.

Our simulations show that on short timescales, the pat-
tern in the VE relation is most sensitive to varying im-
migration rate (fig. 3B), growth rate (fig. 3A), and catas-
trophes (fig. 3D). On long timescales, the pattern is most
sensitive again to immigration rate (fig. 3B) and also to
sampling frequency (fig. 4C) and population ceiling (fig.
3E). Overall, the pattern seems most sensitive to immi-
gration rate. This is not surprising in light of studies of
metapopulation persistence, which show the key role of
this very important quantity (Hanski and Gilpin 1997).
However, the relationship between the immigration rate
and the VE relation is not simple (fig. 3B). For large im-
migration rates, the VE relation is almost 0 and insensitive
to timescale. In such a case, it is likely that population
size variation at the local scale is not an appropriate in-
dicator, the pertinent demographic entity being the meta-
population (Morris and Doak 2002). As immigration rate
decreases (and as local dynamics play an increasing role
compared to global dynamics), the curves appear to shift
to the right (fig. 3B). The likely explanation is that a de-
crease in immigration rate sharply increases the extinction
risk and dampens population fluctuations.

Elsewhere (Schoener et al. 2003), we compared the ad-
equacy of models with and without age structure to fit
spider data on extinction as a function of time observed.
For both species tested, models without age structure gave

good fits to data on large but not small initial population
sizes. We concluded that life cycle characteristics interact
with the various sources of stochasticity and so have to
be taken into account for a precise description of the ex-
tinction process. In this article, the overall form of the VE
relation (decrease, increase, decrease to an asymptote) is
fairly well preserved, but the curves are rather different
quantitatively (fig. A2). This is especially true for Argiope,
for which the model with age structure reaches more neg-
ative slopes and retains negative values for nearly the entire
time span examined. Because the real data give quite neg-
ative slopes, especially in Argiope (Schoener and Spiller
1992), the age-structured model seems a more precise rep-
resentation for purposes of this article as well. Two reasons
can be suggested. First, when a perturbation arises, age
structure increases the convergence time to the asymptotic
state, usually by inducing dampening oscillations. This
causes spurious (not environmentally induced) autocor-
relation in time, that is, an increase in spectral reddening;
if not taken into account, this effect can lead to overes-
timating the role of temporal autocorrelation. Second, en-
vironmental variations may act on vital rates that cause
large fluctuations in total population size but have little
effect on population extinction rates (Gaillard et al. 2000).

Quasi Extinction versus Extinction

Building on their previous work, Inchausti and Halley
(2003) argue that in the GPDD data, extinction risk in-
creases with population variability (computed as orCV(n)

). However, extinct versus extant is here mea-SD(ln (n))
sured by the time to quasi extinction, defined as the time
required to observe a 90% decline in population abun-
dance. In part, quasi extinction is used because the GPDD
series frequently do not contain any zeros—true extinction
does not occur. Our measure of extinction requires that
the population falls to 0 from time to time (where indeed
it can remain for a while when immigration is low). Ac-
cordingly, in our model, extinction rate cannot be com-
puted when growth rate is large (fig. 3A), immigration rate
is large (fig. 3B), or environmental noise is small (fig. 3C).
When the population does not go to 0 in our model, could
ER be replaced by a quasi-extinction rate (qER), where
going below 1 is replaced by going below a threshold value

? The answer is that qER does indeed produce aH 1 1
similar decrease-increase pattern in the VE relation for the
reference model, provided that the threshold H is not too
high (fig. A6 in the online edition of the American Nat-
uralist). The decrease-increase pattern cannot be recovered
when using qER as the growth rate l becomes large or
the environmental noise low (not shown). Thus, the use
of qER when there is no true extinction is not, in general,
an alternative to the use of ER. A major difference between
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the two is that when population size goes to 0, the pop-
ulation can restart only by immigration, whereas it can
still climb away from 0 through its own internal dynamics
when falling below the threshold H.

Conclusion: Relevance to Conservation

What are the implications of our results for conservation?
First, note that our models represent a system whose pop-
ulations have a reasonably high rate of extinction, as in a
metapopulation whose subpopulations wink in and out,
empty sites at which extinction occurred, eventually being
regenerated by immigration. As discussed, many data on
extinction deal with quasi extinction, and there are dif-
ferences between our results on true extinction and our
initial attempts to simulate a kind of quasi extinction. This
issue deserves substantially more exploration, and con-
servation managers will have to chose from among the
various approaches, according to which is the most ap-
propriate match for their system. Second, we emphasize
that sensitivity of the VE relation shown at small timescales
to small differences in immigration has important con-
sequences. Indeed, metapopulation theory tells us that
when environmental stochasticity is not spatially corre-
lated, immigration-emigration processes are acting as a
rescue effect at the local scale (Hanski and Gilpin 1997;
Lecomte et al. 2004). Because most time series are collected
on populations open to immigration, measuring and in-
corporating immigration into these studies is obligatory
whenever the focus is on local population protection. This
also means that monitoring of populations should be ac-
companied by immigration rate measurement (Doligez et
al. 2004). Indeed, the different conclusions of studies find-
ing positive versus negative slopes of extinction rate on
temporal variability in population size might be caused by
differences in immigration rate between their subjects: spi-
ders, mammals, and birds. The slope attains maximally
more negative values the lower the immigration rate (fig.
3B). Third, although no simple general pattern seems likely
to work for all species (as in many viability analyses), a
number of general statements can be made. The VE re-
lation is not very sensitive to local population growth rate
(fig. 3A), which means that sink populations experience
no stronger impact of population variation than do source
populations. Beyond a certain threshold, the strength of
environmental stochasticity has little impact on the rela-
tionship between extinction probability and fluctuations
in population size (fig. 3C). This is not the case for ca-
tastrophes (fig. 3D), implying that local population pro-
tection should deal much more with unexpected events
than with year-to-year climatic variation. Fortunately, fre-
quency of observation (fig. 4C) has little effect on the VE
relation for the reference model. Similarly, population size

has only a minor effect on the way temporal fluctuations
and extinction probabilities are correlated at the local scale
(fig. 3E). As emphasized above, only immigration does.
Contrary to theoretical expectations, even small rates of
immigration are enough to render population viability
analysis projection based on single populations misleading
(Morris and Doak 2002). However, a more detailed anal-
ysis, including examination of the pattern of spatial au-
tocorrelation in population growth and immigration-
emigration processes, will be needed to describe more fully
the conditions under which a single-population approach
would be sufficient compared to a metapopulation
approach.
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