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abstract: Underlying the many causes of extinction of small pop-
ulations is the random fate of each constituent individual or, in other
words, demographic stochasticity. Demographic stochasticity is in-
herent to any demographic process, regardless of the environment,
and its strength increases as population size gets smaller. In particular,
random fluctuations in the proportion of males and females and the
way they pair for reproduction (i.e., the social mating system) are
usually neglected. To assess the potential importance of demographic
stochasticity to the extinction process, a two-sex model with an ex-
plicit mating system was built. Extinction probabilities computed via
Monte Carlo simulation were compared to real data, the case of
passerines introduced to New Zealand a century ago. This minimal
model of extinction allowed assessment of the importance of the
mating system in the colonization process. Monogamous mating led
to a higher extinction risk than did polygynous mating. Demographic
uncertainty imposes high extinction probabilities on short-lived bird
species as compared to long-lived bird species. Theoretical results
for two-sex models are provided.

Keywords: conservation biology, demographic stochasticity, mating
system, probability of extinction, two-sex models.

Demographic stochasticity results from the random fate
of individuals and can never be avoided. Its effects, strictly
dependent on population size, may cause extinction of
small-sized populations, in addition to environmental sto-
chasticity, natural catastrophes, inbreeding depression, and
loss of genetic diversity (Lande and Barrowclough 1987;
Tuljapurkar 1990; Lande 1993, 1995). Demographic sto-
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chasticity could be considered as an Allee effect (Simberloff
1986; Lande 1987; Dennis 1989) and is likely to underpin
the mechanism of the extinction vortex. Recent work sug-
gests that demographic stochasticity could be a more im-
portant cause of population extinction than previously
thought (Gabriel and Bürger 1992; Mode 1995; Kokko and
Ebenhard 1996) because all life-cycle transitions are po-
tentially affected by this type of variation. Consequently,
modeling the main features of the life cycle of a species,
such as its social system, will be crucial to population
viability analysis (PVA; Soulé 1987; Boyce 1992; Burgman
et al. 1993). For example, because of random fluctuations
in the number of males and females, the social system will
have a direct effect on the number of reproducing females.
Indeed, the likelihood of finding an appropriate partner
given the mating system has been seen as a potentially
important Allee effect in sexual species (Saether et al.
1996), as well as one of the main costs of evolution and
maintenance of sexuality (Michod and Levin 1987). It has
been suspected to be the main cause driving kakapo (Stri-
gops habroptilus) populations toward extinction (Trewick
1997) and to have caused the extinction of the passenger
pigeon in North America (Daily and Ehrlich 1995).

In this study, we constructed a null model in the sense
that demographic stochasticity, which cannot be neglected
for small population sizes, was the only possible cause of
extinction. Other causes, whose contribution to extinction
is uncertain, were not considered. However, we incorpo-
rated all possible causes of stochastic fluctuations and ex-
amined the extent to which the mating system influenced
the probability of extinction. We built a two-sex model in
which pair formation was explicitly taken into account
and considered several mating systems, from strict mo-
nogamy to full polygyny.

Few studies have been devoted to modeling mating sys-
tems and their influence on population dynamics (As-
mussen and Hering 1983; Caswell and Weeks 1986; Mode
1995). To understand the importance of this problem in
natural situations, we compared the extinction probabil-
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Figure 1: Two age-class life-cycle graphs for passerines. A, Usual one-sex model (demographic parameters as in table 1). B, Two-sex model with
mating system.

ities predicted from a two-sex model with social monog-
amy to a female-based or one-sex model (Caswell 1989),
using the observed extinction probability of passerine spe-
cies introduced to New Zealand a century ago (Veltman
et al. 1996; Duncan 1997; Green 1997). For each intro-
duced species, the number of released individuals was ob-
tained from the literature, and introduction success was
assessed by checking whether the species was still present.
This data set is particularly interesting because the number
of release events is rather large and the timescale rather
long, conditions that are rarely met in conservation biology
(Griffith et al. 1989; Sarrazin and Barbault 1996; Wolf et
al. 1996). In fact, this type of data is scarce, and the few
data sets available (e.g., Moulton and Pimm 1983; Griffith
et al. 1989; Berger 1990; McLain et al. 1995) lack some
features needed to test stochastic population-dynamics
models. We used data only on passerines (Duncan 1997)
in order to avoid additional complexities of considering

species with different life-cycle characteristics. Our model
was therefore built to represent an average passerine life
cycle. Nevertheless, we investigated the effect of the life
cycle, in particular the effect of population turnover, by
examining a model with different age at maturity, fe-
cundity, and survival.

Methods

Life-Cycle Graph

Passerine life history was modeled by a life-cycle graph
with two age classes (fig. 1A). The first class consisted of
subadults (first-year individuals) and the second of adults
(second year or older). We assumed a prebreeding census
(Caswell 1989; Clobert and Lebreton 1991; McDonald and
Caswell 1993). Juveniles reproduce before their first birth-
day, and this explains why the juvenile survival rate s0 was
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Table 1: Demographic parameters used in the models

Demographic
parameters Value Elasticity l T

Passerine (two age classes):
Juvenile survival rate (s0) .20 .60 1.1050 1.67
5% reduction (s0) .19 1.0720 )
10% reduction (s0) .18 ) 1.0390 )
Subadult survival rate

(s) .35 .21 ) )
Adult survival rate (n) .50 .18 ) )
Subadult fecundity (f1) 7.0 .38 ) )
Adult fecundity (f2) 7.0 .22 ) )

Griffon vulture (four age
classes):

Juvenile survival rate (s0) .80 .10 1.0490 10.04
10% reduction (s0) .72 ) 1.0383 )
Immature survival rates:

s1 .80 .10 ) )
s2 .80 .10 ) )
s3 .84 .10 ) )

Adult survival rate (n) .90 .60 ) )
Adult fecundity (f ) .80 .10 ) )

Note: l 5 growth rate, 5 mean generation length.T

Figure 2: Various mating systems; nm(nf) is the number of mature males
(females), j the primary female sex ratio, a(nm, nf) the number of matings,
and na(j) the limit of a when the proportion of females tends toward j.
The corresponding graph is given. Dotted lines in B–D arej r n (j)a

given for comparison with the monogamous mating system (A).

included in the transitions corresponding to reproduction.
Fecundity was defined as clutch size per reproducing fe-
male (Clobert and Lebreton 1991) multiplied by the num-
ber of broods. A matrix model can be derived from the
life-cycle graph, and we will call it the “linear model.” The
dominant eigenvalue of the matrix gives the asymptotic
growth rate, l, of the population (Caswell 1989). In the
linear model, it is usually assumed that the population
consists only of females, and the fecundities are multiplied
by the primary female sex ratio (j), that is, the proportion
of females at birth. The growth rate is a contin-l 5 l(j)
uously increasing function of j. Because we later introduce
two-sex models, the growth rate l(j) of the linear one-
sex model will be considered as the reference growth rate.
Other demographic quantities, such as population struc-
ture or mean generation length, can be computed from
the linear model. Average demographic parameters of pas-
serine species have been used (table 1; see Gaillard et al.
1989; Martin and Clobert 1996). The corresponding rather
favorable growth rate is not uncommon inl 5 1.1050
passerines.

Two-Sex Models with Mating System

To take both sexes into account, we built separate life-
cycle graphs for males and females. These graphs were
connected by arrows corresponding to reproduction, going
from females to males and females, according to the pri-
mary female sex ratio (fig. 1B). We assumed a balancedj

sex ratio ( ) and identical survival rates for malesj 5 0.5
and females. We also modeled the way that males and
females paired, that is, the social mating system. Formally,
one has to consider the number of matings (A) as a de-
terministic or probabilistic function of the number of ma-
ture males, nm, and the number of mature females, nf :

. The function (or distribution) is assumedA 5 a(n , n ) am f

to have biologically realistic properties (Asmussen and
Hering 1983; Caswell and Weeks 1986; Mode 1995). Al-
ternative mating systems are displayed in figure 2. In the
monogamous mating system, males and females are paired
one to one, and excess males or females do not mate. The
number of matings (A) is the minimum of the number
of mature males and the number of mature females
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. In a polygynous mating system, a sin-(A 5 min (n , n ))m f

gle male can mate with several females, and reproduction
is optimized. If each male mates with the most females (h
being harem size), the number of matings is the number
of females as long as there are at least h females per male
( ). When the harem size is unrestricted,A 5 min (hn , n )m f

the number of matings is equal to the number of females,
except when there are no males, in which case it is 0
( , then nf, otherwise 0). To account for otherA 5 if n 1 0m

factors influencing the social mating system, such as com-
petition between eligible mates, the number of matings
computed from the mating function can be further re-
duced by a coefficient g ( ). For example, the0 ! g ≤ 1
number of monogamous matings can be computed as

, where the square brackets stand forA 5 [g min (n , n )]m f

the integer part. In our model, no record is kept of matings
over time; that is, fidelity is not modeled.

Demographic Stochasticity and Probability of Extinction

The mathematical framework of population dynamics un-
der demographic stochasticity is that of multitype branch-
ing processes (Harris 1963; Athreya and Ney 1972; As-
mussen and Hering 1983; Gosselin and Lebreton 1999).
In contrast to continuous population dynamics models,
population sizes are restricted to integer values. We give
here a simple description of the branching processes. Let
us consider n individuals subjected to a mean survival rate
s. The number of survivors, n′, is computed as the sum
of n Bernoulli (head and tail) trials with mean s, or, equiv-
alently, as the realization of a binomial distribution. More
generally, when n individuals go through a transition with
a result of 0 with probability and 1 with probability1 2 p
p (e.g., proportion of females, proportion of breeders), a
binomial distribution binom(n, p) is used. For the fe-
cundity transition, the number of descendants was com-
puted as the sum of trials according to an integer-valued
distribution, for example, a Poisson distribution.

When demographic stochasticity acts on the life-cycle
transitions, population size over time, n(t), is a stochastic
process. A trajectory is a realization of the process, and
the process can be identified with the set of all its possible
trajectories. A trajectory is declared extinct as soon as the
value 0 is reached. The (ultimate) probability of extinction
pe is the “proportion” of trajectories that go extinct among
all trajectories. If a time horizon T is fixed, the probability
of extinction at time T, pe(T), is the probability that a
trajectory goes extinct by time !T. Since, at any time, all
individuals in the population might leave no survivors or
descendants, some trajectories necessarily go extinct and
pe is never 0. The time when extinction occurred can be
associated with each extinct trajectory. This defines the
extinction time of the process as a random variable te.

We now recall the main results for branching processes
when the underlying process is linear with growth rate l

(Harris 1963; Athreya and Ney 1972). Apart from extinc-
tion, the average population mainly behaves as predicted
by the underlying linear process. The growth rate of the
average population is l, and the average population struc-
ture is given by the right eigenvector with respect to l.
For , as is assumed here, and pe dependsl 1 1 0 ! p ! 1e

on initial population size and structure (for ,l ≤ 1 p 5e

). For , convergence of the process toward pe is1 l ( 1
geometric and the mean extinction time, E(te), is finite.
To summarize, if a population with is not extinct atl 1 1
time , then it has a very high probability of es-t k E(t )e

caping extinction coming from demographic stochasticity,
and it will on average grow according to l. Incorporating
the mating system turns the model from a linear one to
a frequency-dependent one, in the sense that the propor-
tion of individuals in age classes affects the demographic
parameters (Caswell and Weeks 1986; Chung 1994). We
shall see how results obtained for linear models extend to
frequency-dependent ones.

Monte Carlo Simulation

The two-sex life-cycle graph together with the mating sys-
tem provide the framework for the process by which
demographic stochasticity acts via binomial and Poisson
distributions. Parameters subjected to demographic sto-
chasticity were male and female survival rates, female fe-
cundity, and primary sex ratio. More precisely, the follow-
ing operations were performed at each time step:
computing the number of matings according to the mating
system considered, computing the number of descendants
according to age-dependent fecundities, drawing the num-
ber of males and females according to the primary sex
ratio, and computing the number of survivors according
to age-dependent survival rates. For simplicity, we have
chosen an equal number of males and females in each age
class as initial population structure, close to the stable age
distribution of the linear model (63% subadults and 37%
adults). We have also assumed that pairings could occur
with equal probability among age classes. The model was
studied via Monte Carlo simulation, using the ULM (Uni-
fied Life Models) computer program (Legendre and Clo-
bert 1995; Ferrière et al. 1996). One thousand trajectories
were drawn over a 100-yr time horizon. The probability
of extinction at time 100, pe(100), was close to the ultimate
probability of extinction pe. The Monte Carlo procedure
was performed for a range of initial population sizes. In
this way, we obtained the probability of extinction as a
function of initial population size.
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Passerine Species Introduced to New Zealand

The introduction of passerine species to New Zealand 100
yr ago can be seen as a natural Monte Carlo simulation.
Indeed, if all introduced species are considered as several
introductions of a single average passerine species, we can
classify all the introduction attempts with respect to the
number of released individuals, as in Green (1997) or
Griffith et al. (1989). The assumption here is that each
introduction is a single realization of the same stochastic
process, with different initial conditions. This is obviously
not completely true because the introduced passerines dis-
play some heterogeneity in their life-cycle characteristics
(Sorci et al. 1998). We simply hope that this heterogeneity
will be less important for the probability of extinction than
the effect of demographic stochasticity on pair formation.
Most species of passerines are socially monogamous, and
we have used a monogamous mating system. Three po-
lygynous species were discarded from the data set of Dun-
can (1997). All introduction attempts were classified into
eight categories (table 2). For example, the third category
of table 2groups eight introductions with three failures and
an average initial population size of 44. Those eight in-
troductions are considered to represent eight replicates of
an introduction of 44 individuals. The proportion of fail-
ures of 0.38 (3/8) can be identified with the probability
of extinction of the process, with 44 individuals as initial
condition. Some data show the limits of this averaging
approach. Carduelis flammea succeeded from a single cou-
ple, while Manorina melanocephala never succeeded with
80, 200, and 224 individuals released. Since this last species
was the only species contributing to extinction in the sixth
category, this category was not used.

Results

The Importance of the Mating System with Regard
to Extinction Probability

For a two-sex model with mating system, an important
point is to assess the influence of the mating system on
the growth rate of the population and, linked to it, on the
probability of extinction. Let be the growth rate ofl (j)a

the two-sex population, with mating function a and pri-
mary female sex ratio j. Assuming identical survival rates
for males and females, we prove in the appendix that the
two-sex growth rate is related to the reference growth rate
l(j) via a function na(j) that captures the features of the
mating system:

l (j) 5 l(n(j)). (1)a a

The function is 0 for or 1 and is typicallyj r n(j) j 5 0a

convex with a single maximum at the “optimal” sex ratio

(this optimum may not be evolutionarily stable; fig. 2).
Moreover, and since is a continuouslyn(j) ≤ j j r l(j)a

strictly increasing function of j, equation (1) shows that
. For example, the polygynous mating systeml (j) ≤ l(j)a

with harem size h and mating function a(n , n ) 5m f

leads to with a max-min (hn , n ) n(j) 5 min (h(1 2 j), j)m f

imum at (fig. 2D). The value corre-j 5 h/(h 1 1) h 5 1
sponds to the monogamous mating system, and the max-
imum is the classical value (fig. 2A). Forj 5 0.5 j ≤

, and , while for , and0.5 n(j) 5 j l 5 l j 1 0.5 n(j) ! ja

. When the number of matings is reduced by a co-l ! la

efficient g (e.g., the proportion of breeders), this has the
same effect as reducing the juvenile survival rate s0 by g

in the one-sex model, leading to a reduction in the ref-
erence growth rate l. The expected growth rate of the two-
sex model la is reduced accordingly.

The case of the monotype two-sex branching process
(Asmussen and Hering 1983, p. 409; their formula for the
expected growth rate of the two-sex population is a special
case of eq. [1]) and our simulations for multitype two-
sex branching processes suggest that frequency-dependent
branching processes behave roughly as linear branching
processes. Indeed, after transient behavior, the realized sex
ratio stabilizes, and the underlying process is close to a
linear process (appendix), then general results that have
been recalled for linear branching processes apply. Fre-
quency dependence induced by the mating system mainly
increases the probability of extinction and slows down
convergence toward the asymptotic growth rate la. For a
linear model, transient oscillatory effects come from the
convergence toward the stable population structure (Cas-
well 1989). For a two-sex frequency-dependent model,
transient effects coming from the convergence toward the
equilibrium sex ratio superimpose on the previous effects.
Transient oscillations are more important and last longer.
This explains the larger probability of extinction and the
slower convergence in frequency-dependent branching
processes. Since small founding populations are subject to
the transient part of the dynamics, this further shows the
importance of fluctuations arising from sexual behavior
in colonization processes.

To assess the influence of the mating system on the
demographic process, extinction probabilities were com-
puted for the one-sex model with no mating system and
for the two-sex model with various mating systems (fig.
3A). For the polygynous mating system with unrestricted
harem size, extinction probabilities are close to those of
the one-sex model. Probabilities of extinction of the po-
lygynous mating system with harem size of two are similar
and are not shown. Extinction probabilities of the mo-
nogamous mating system are much higher. The reason is
that the extinction risk depends on the number of repro-
ducing females: in the monogamous mating system, when
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Table 2: Data for passerines introduced to New Zealand 100 yr ago

Released species
Introduction

success
Release

sites

Initial
population

size
Mean
n(0) pe

Initial size, 229:
Carduelis flammea 1 W 2 (1) ) )
Carduelis spinus 0 W 2 (1) ) )
Manorina melanophrys 0 W 2 (1) ) )
Passer montanus 0 O 2 (1) ) )
Piranga rubra 0 A 2 (1) ) )
Pyrrhula pyrrhula 0 C 2 (1) ) )
Stagonopleura bella 0 A 2 (1) ) )
Fringilla montifringilla 0 W 3 (1) ) )
Emberiza cirlus 1 W 4 (1) ) )
Emberiza schoeniclus 0 O 4 (1) ) )
Neochmia temporalis 0 O 4 (1) 5 .78
Corvus monedula 0 C 5 (1) ) )
Sylvia atricapilla 0 A 5 (1) ) )
Lullula arborea 0 A 5 (1) ) )
Emberiza hortulana 0 W 6 (1) ) )
Padda oryzivora 0 A 6 (1) ) )
E. cirlus 1 O 7 (1) ) )
E. schoeniclus 0 C 7 (2) ) )
Carduelis chloris 1 O 8 (1) ) )
Lonchura punctulata 0 A 8 (1) ) )
S. bella 0 W 8 (1) ) )
Turdus philomelos 1 W 8 (1) ) )
Erithacus rubecula 0 A 9 (3) ) )

Initial size, 10222:
E. rubecula 0 W 10 (1) ) )
Gymnorhina tibicen 1 A 10 (2) ) )
Lonchura castaneothorax 0 C 12 (1) ) )
Malurus cyaneus 0 A 12 (1) ) )
Poephila guttata 0 W 12 (1) ) )
Stagonopleura guttata 0 W 12 (1) ) )
N. temporalis 0 A 12 (2) 15 .79
P. montanus 0 A 12 (2) ) )
Passer domesticus 1 O 14 (2) ) )
Fringilla coelebs 1 C 16 (4) ) )
Acridotheres tristis 0 C 18 (1) ) )
Carduelis cannabina 0 O 20 (2) ) )
Carduelis flavirostris 0 C 21 (1) ) )
C. cannabina 0 W 22 (2) ) )

Initial size, 27246:
L. castaneothorax 0 A 27 (2) ) )
C. chloris 1 C 32 (2) ) )
Corvus frugilegus 1 C 36 (4) ) )
C. flavirostris 0 O 38 (1) ) )
Emberiza citrinella 1 O 39 (2) 44 .38
C. cannabina 0 A 42 (4) ) )
P. domesticus 1 C 44 (1) ) )
Prunella modularis 1 A 46 (4) ) )

Initial size, 49281:
P. domesticus 1 A 49 (2) ) )
P. modularis 1 W 50 (3) ) )
C. chloris 1 A 51 (3) ) )
C. spinus 0 C 52 (2) ) )
Carduelis carduelis 1 A 55 (2) ) )
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Table 2 (Continued)

Released species
Introduction

success
Release

sites

Initial
population

size
Mean
n(0) pe

Alauda arvensis 1 A 62 (2) ) )
E. rubecula 0 O 62 (3) 63 .42
C. frugilegus 0 A 66 (2) ) )
A. tristis 0 W 70 (2) ) )
Manorina melanocephala 0 O 80 (1) ) )
C. flammea 1 O 81 (2) ) )
G. tibicen 1 O 81 (5) ) )

Initial size, 982126:
P. modularis 1 O 98 (2) ) )
F. coelebs 1 O 99 (3) ) )
A. arvensis 1 O 100 (3) ) )
A. arvensis 1 W 108 (2) ) )
Sturnus vulgaris 1 A 109 (3) ) )
F. coelebs 1 A 113 (4) 113 .17
F. montifringilla 0 C 117 (4) ) )
C. carduelis 1 O 118 (4) ) )
C. cannabina 0 C 119 (4) ) )
T. philomelos 1 A 125 (2) ) )
S. vulgaris 1 C 125 (4) ) )
F. coelebs 1 W 126 (4) ) )

Initial size, 1382236:
Turdus merula 1 O 138 (5) ) )
T. philomelos 1 O 145 (5) ) )
S. vulgaris 1 O 169 (3) ) )
T. merula 1 A 170 (4) ) )
C. carduelis 1 W 177 (3) ) )
M. melanocephala 0 C 200 (1) 189 .18
P. domesticus 1 W 200 (1) ) )
C. flammea 1 A 209 (1) ) )
P. modularis 1 C 210 (6) ) )
M. melanocephala 0 W 224 (4) ) )
E. citrinella 1 C 236 (3) ) )

Initial size, 2602345:
G. tibicen 1 W 260 (1) ) )
C. carduelis 1 C 265 (4) ) )
S. vulgaris 1 W 298 (5) ) )
T. philomelos 1 C 299 (7) 301 .0
G. tibicen 1 C 313 (9) ) )
C. flammea 1 C 326 (5) ) )
E. citrinella 1 A 345 (6) ) )

Initial size, 4342477:
A. arvensis 1 C 434 (5) ) )
T. merula 1 C 477 (7) 455 .0

Source: Duncan 1997.

Note: Introduction events have been classified according to similar initial population sizes. Release

sites: A 5 Auckland; C 5 Canterbury; O 5 Otago; W 5 Wellington. Numbers in parentheses are

the number of release events. Mean n(0) 5 average initial population size for each class; pe 5

proportion of failures for each class.
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Figure 3: Probability of extinction at time 100, pe(100), as a function of initial population size, n(0). A, Passerine model, various mating systems
(cf. fig. 2; growth rate in all cases): one-sex model, no mating system (solid diamonds); polygynous mating system with unrestrictedl 5 1.1050
harem size (solid triangles); monogamous mating system (open squares); competitive monogamous mating system with 10% reduction in the number
of matings (open circles; number of matings ). B, Short-lived (passerine, growth rate ) versus long-lived (griffonA 5 [0.9 min (n , n )] l 5 1.1050m f

vulture, growth rate ). In both cases, the number of monogamous matings is reduced by 10%.l 5 1.0490

random fluctuations lead to fewer males than females,
unpaired females do not reproduce, while in the polygy-
nous mating system, all females reproduce. Incorporating
a cost of polygyny, such as reduced paternal care, could
change this result. When a realistic coefficient g affecting
the number of monogamous matings is introduced (the
number of matings is reduced by 10%), extinction prob-
abilities increase dramatically (fig. 3A). Thus, a slight var-
iation in the number of breeders has a considerable impact
on population viability.

Fitting the Model with the Data

The probabilities of extinction computed from the average
passerine model were plotted against the observed prob-

abilities of extinction as a function of initial population
size (fig. 4). We used the reference growth rate l 5

, and the number of monogamous matings was re-1.1050
duced by 5% ( ). To estimate theA 5 [0.95 min (n , n )]m f

goodness of fit, we regressed the observed probabilities
against those predicted by the model. The predicted values
explained 90% of the variance in the observed values
( ; ; SAS Institute 1992). Considering ap-2P 5 .001 R 5 0.90
proximately the same set of species, Green (1997) used
three ranges of initial population sizes— ,2 ≤ n(0) ≤ 10

, and —and computed the cor-10 ! n(0) ≤ 100 n(0) 1 100
responding probabilities of extinction, 0.85, 0.75, and 0.08,
respectively. His results, which are consistent with those
of Griffith et al. (1989), agree with those of our model.
So far, for each introduced species, we have considered
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Figure 4: Results of the model against observed extinction in the case of passerines introduced to New Zealand (from Duncan 1997): probability
of extinction at time 100 as a function of initial population size; observed probabilities of extinction, as given in table 2 (solid circles), and computed
probabilities of extinctions, as given by the model (growth rate ), monogamous (open squares), and monogamous with 5% reduction inl 5 1.1050
the number of matings (open circles).

that all release events took place simultaneously, as if only
one release event had occurred (e.g., four releases of 20
individuals every 4 yr is considered as a single release of
80 individuals). As a check, we simulated the introduction
of the same number of individuals either in a single release
event or in several release events with various time lags
between events (some cases are reported in fig. 5). It ap-
peared that, when demographic stochasticity was the sole
factor of uncertainty, the probability of extinction de-
pended mainly on the number of released individuals (it
increased with the number of release events and with the
time lag between events). This result also held for the long-
lived species considered below. However, taking environ-
mental stochasticity into account would modify this con-
clusion (Haccou and Iwasa 1996).

Short Lived versus Long Lived

To compare the introduction success of short-lived and
long-lived birds, the corresponding two-sex model with
monogamous mating system was built for a long-lived bird
species (griffon vulture Gyps fulvus). Demographic param-
eters given in Ferrière et al. (1996) have been altered in
order to obtain a lower reference growth rate (table 1;

against for passerine). For our pas-l 5 1.0490 l 5 1.1050
serine model, mean generation length is 1.7 yr, while it is
10.0 yr for the griffon vulture. In both cases, the number
of monogamous matings was reduced by 10%. The co-
efficient affecting the number of possible matingsg 5 0.9
is the proportion of breeders that has been observed for
the griffon vulture (F. Sarrazin, personal communication).
It appears that extinction probabilities are much higher

for the short-lived species (fig. 3B). For short-lived and
long-lived life cycles, the demographic parameters with
fluctuations that have the strongest impact on the growth
rate are not the same, and this can be measured by sen-
sitivity analysis (Caswell 1989; see also Fox 1993). For the
short-lived species, the most sensitive parameter is juvenile
survival rate while for the long-lived species, it is adult
survival rate (table 1). A reduction in the number of breed-
ers has the same effect as a reduction in juvenile survival
rate (s0) in the underlying linear model, and it reduces the
growth rate (l), which in turn increases the probability
of extinction. This reduction in growth rate is more im-
portant for short-lived than for long-lived species. This
explains why the mating system has the strongest impact
on the probability of extinction in the former species due
to stochastic fluctuations in the number of matings. If the
reference growth rates are corrected to take into account
the reduction in the number of matings, we obtain l 5

for the short-lived and for the long-1.0390 l 5 1.0383
lived species (table 1). Thus, identical growth rates lead
to very different probabilities of extinction for species with
different generation time. Short-lived bird species have a
rapid turnover, which amplifies the stochastic fluctuations
in the number of descendants because of the combined
chance realizations of the number of matings, the number
of fledglings, and the primary sex ratio. For the long-lived
species, these fluctuations are buffered by the pool of in-
dividuals that remain from one year to the next.

Discussion

We developed a two-sex model by duplicating a female-
based model and adding a mating function. The growth
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Figure 5: Probability of extinction at time 100 as a function of initial population size for various release scenarios (passerine, , numberl 5 1.1050
of matings ): one release event, all individuals released simultaneously (dotted line); four release events with 1 yr between eventsA 5 [0.9 min (n , n )]m f

(solid diamonds); four release events with 4 yr between events (solid triangles); two release events with 4 yr between events (open squares).

rate of the two-sex model was lower than or equal to the
growth rate of the one-sex model. Including demographic
stochasticity extended the time at which the population
was at risk (transient phase). Although the model was
based on several assumptions (similar life cycles for males
and females, mating function irrespective of age or density,
absence of individual heterogeneity), it produced a close
fit to extinction probabilities observed for passerine species
introduced to New Zealand a century ago. The effect of
demographic stochasticity on pair bond formation de-
pended on generation time; the extinction probability of
long-lived species was not very sensitive to this parameter.

Two-Sex Model and Demographic Stochasticity

Finding a mate has long been thought to be a potentially
important cost associated with the evolution of sexuality
(Michod and Levin 1987). Sexuality appears to increase
the probability of extinction (Lynch et al. 1993, 1995a,
1995b), and at least in some species, parthenogenesis may
have evolved secondarily because of high probability of
extinction linked to the maintenance of sexuality when
populations are small and isolated (Gerritsen 1980; Bern-
stein et al. 1985). Maintaining sexuality in small-sized pop-
ulations appears to be costly. We showed that the number
of individuals required to achieve a given probability of
extinction increased by a factor of two or even 10, when
going from the one-sex model to the two-sex model (see
fig. 3A). This largely exceeds the effect of inbreeding or
mutation accumulation (Lynch et al. 1995a), at least for
short-term persistence. Polygynous mating systems are less

sensitive to demographic stochasticity than monogamy,
and it may be predicted that a polygynous mating system
should be selected for in small-sized populations for rea-
sons other than simple competition for suitable breeding
territories or mates (Orians 1969; Davies 1992). We as-
sumed that the life cycle was identical for males and fe-
males, which may not be the case. The difference between
male and female life cycle may reveal further complexities
in the role of sex in small-sized populations (McLain et
al. 1995; Sorci et al. 1998). For example, modeling the
competition for mates in two-sex models has revealed the
possibility of quasi-periodic or even chaotic dynamics be-
cause of the frequency-dependent nature of these models
(Caswell and Weeks 1986; Chung 1994).

The difficulty of finding a mate has often been proposed
as an Allee effect (Andrewartha and Birch 1954; Dennis
1989; Sutherland 1996). However, few if any documented
cases of a decrease in demographic parameters when den-
sity decreases have been reported for vertebrates (Fowler
and Baker 1991; Myer et al. 1995; Saether et al. 1996).
Beside the fact that estimating demographic parameters in
small-sized populations is a difficult task and may preclude
the detection of any Allee effect (Saether et al. 1996), add-
ing demographic stochasticity to the probability of finding
a mate has the effect of reducing the average reproductive
success. The first consequence of taking into account the
mating system is that the proportion of individuals that
will participate in reproduction will be lowered with re-
spect to a one-sex model. This was formally demonstrated
by deriving an analytical expression (eq. [1]; appendix)
that links the growth rate of a two-sex model to the growth
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rate of the corresponding one-sex model by the intro-
duction of the mating function. The magnitude of the
decrease will also depend on population size because of
demographic stochasticity. Given that the proportion of
reproducing females in a given stage or age is particularly
difficult to estimate, especially for birds (Clobert 1995), it
is not surprising that few cases have been reported. None-
theless, demographic stochasticity acting on the probability
of finding a mate induces an increase in extinction prob-
ability, as shown by the comparison with the introduction
success of passerines in New Zealand.

Extinction Probabilities of Passerines Introduced
to New Zealand

Approximately 137 species of exotic birds have been in-
troduced by humans to New Zealand before 1907 and 20%
are still present (Veltman et al. 1996). We selected pas-
serines (Duncan 1997) because, as a group, they have sim-
ilar life cycles. For each introduced species, two key var-
iables are available: the number of released individuals and
the number of release events. We therefore decided to use
this data set (table 2) to check whether our null model,
based solely on demographic stochasticity, could satisfac-
torily predict the fate of these introductions in New Zea-
land. We calculated extinction probabilities by assuming
that each species introduction attempt was a trial of a single
process where only propagule sizes differed. Comparison
with the simulated probabilities of extinction derived from
a two-sex passerine life cycle with average demographic
parameters was satisfactory. However, for small propagule
sizes, a higher extinction risk was predicted by our model.
In the data set of Duncan (1997), introduction success of
a species on a site is assessed by its actual presence, which
might bias the true extinction frequency. Indeed, the pres-
ence of a bird species in a site could come from later
immigration from another site where it succeeded. This is
the case for Gymnorhina tibicen, whose introduction at
Otago (81 individuals) is reported as a success, while Long
(1981) states that it went extinct by the late 1920s but
later appeared again because of natural immigration from
Canterbury (313 individuals introduced). Also, unre-
ported introductions that succeeded could conceal the fail-
ure of introductions reported as successful and raise initial
population sizes. Nevertheless, the match of the model
against the data for passerines suggests that the probability
of finding a mate is an important factor for the persistence
of these species. We found that, for a given number of
introduced individuals, the type of mating system strongly
influences the probability of extinction. Our result high-
lights the need to study the mating systems in conservation
biology, at least for short-lived species (Berger 1996; Hög-
lund 1996; Saether et al. 1996). There are other causes of

introduction failure, such as the suitability of the area of
introduction (Griffith et al. 1989), competition between
introduced species (Moulton and Pimm 1983; Duncan
1997), temporal variability (Griffith et al. 1989), or trans-
plantation cost (Massot et al. 1994; Sarrazin et al. 1994;
Wolf et al. 1996). In this study, we do not exclude these
causes as possible explanations for the observed extinc-
tions. They would reduce the demographic parameters,
merely amplifying the sampling effect of demographic sto-
chasticity. We suggest that, for short-lived bird species, the
main contribution to extinction could come from dem-
ographic stochasticity, implying that initial population size
is a strong predictor of colonization success. We assumed
that all individuals of a species were released on one single
occasion instead of several. Simulations showed (fig. 5)
that, within realistic bounds, the number of release events
for a single species had little influence on the probability
of extinction as long as temporal variations in the envi-
ronment were low compared to the effect of demographic
stochasticity. In other words, sustained introduction of
species for which demographic stochasticity is the main
contributor to extinction would not improve introduction
success. Our results are therefore in accord with Griffith
et al. (1989) and Wolf et al. (1996), who found that the
number of released individuals correlated strongly with
translocation success but did not find a consistent rela-
tionship between translocation success and the number of
release events.

Generation Time and Extinction Probability

The number of individuals to be released in order to max-
imize the chances of successful establishment decreased
with species generation time. We compared two life cycles,
one that may represent a passerine life cycle and one that
may represent a large scavenger or marine bird. For ex-
ample, to obtain a 90% probability of persistence 100 yr
after an introduction, more than 200 individuals are
needed for short-lived species while only 30 are needed
for long-lived ones (fig. 3B). As long as body size is a good
indicator of species generation time (Gaillard et al. 1989),
our results are consistent with the observation that large-
bodied animals seem to be better colonizers than small-
bodied ones (Pimm et al. 1988) or to have a better trans-
location success (Griffith et al. 1989). Demographic sto-
chasticity turns out to have a greater impact on short-lived
species than on long-lived ones, especially at introduction.
Similarly, the probability of finding a mate has much less
effect as generation time increases. Indeed, demographic
stochasticity on mate acquisition mainly affects recruit-
ment parameters whose fluctuations have less impact on
the population growth rate as generation time increases
(Lebreton and Clobert 1991). In such cases, other sources
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of extinction such as natural catastrophes or temporal var-
iations in the environment may predominate (Ewens et
al. 1987; Goodman 1987; Shaffer 1987; Lande 1993). These
sources of extinction are no longer related to population
size above some threshold value. Indeed, the probability
of extinction is an exponentially decreasing function of
initial population size (depending on the mating system
and generation time) for demographic stochasticity, while
it is, in the long run, independent of initial population
size for environmental stochasticity (Tuljapurkar 1990).
Taking density dependence into account would complicate
this scheme (Lande 1993). However, the data set of Griffith
et al. (1989) shows that, above some propagule size, the
probability of extinction is nearly constant.

Conclusion

Demographic stochasticity could be one of the most im-
portant sources of extinction for small-sized populations
of short-lived bird species. For these species, taking into
account the mating system is of prime importance to pre-
dict accurately the probability of extinction. The simul-
taneous effect of the mating system and demographic sto-
chasticity principally affects the proportion of breeding
females, which has a high impact on the population growth
rate. Long-lived species are less sensitive to both factors.
Future studies need to incorporate more details on the
mating system and, in particular, its modification with
population density. Then it will be possible, for popula-
tions kept in small numbers for a long period of time, to
study the interplay between the evolution of the mating
system, the probability of extinction and the colonization
ability.
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APPENDIX

Two-Sex Matrix Model with Mating System

We start from a usual age-structured model with age classes
(k) and matrix

) a f a f a f1 1 k21 k21 k k
)s 0 01$X(a) 5 ,_ 5 _ _ 
)0 s v k21

where f1, ..., fk are female fertilities; s1, ..., sk21 are subadult

survival rates; is adult survival rate ( gives the Lesliev v 5 0
matrix); and is a set of parameters. The$a 5 (a , ..., a )1 k

one-sex model has matrix with , where$ $X(j) j 5 (j, ..., j)
j is the primary female sex ratio (proportion of females
at birth), and we denote by l(j) the corresponding dom-
inant eigenvalue (the matrix is primitive for , andv ( 0
we assume primitivity when ).v 5 0

For the two-sex model, our first assumption is that
males and females have identical life cycles (in particular,
identical survival rates). The two-sex matrix with mating
system is built from the duplicated life-cycle graph (fig.
1A shows the case of two age classes) and is a block matrix

$$ X(0) Y((1 2 j)b)
  .$O X(jb) 

Matrix corresponds to the male life cycle and has$X(0)
null entries in the first row. Matrix corresponds to$X(jb)
the female life cycle, with the first row accounting for
female offspring. Matrix corresponds to male$Y((1 2 j)b)
offspring and has null entries except in the first row. The
population vector is ( , )′, with nmi(nfi)n , ..., n n , ..., nm1 mk f 1 f k

as the number of males (females) in the ith age class. Our
second assumption describes how the mating system is
modeled, nm(nf) being the number of reproducing males
(females) and a the mating function.

Second, at each time step, the total number of matings,
, is computed, and the matings are dis-A 5 a(n , n )m f

patched equitably among reproductive age classes. The
third series of assumptions concerns the mating function,
supposed to have biologically realistic properties (Asmus-
sen and Hering 1983; Caswell and Weeks 1986), and the
existence of a limit function capturing its main features.

In the third assumption, the mating function a has a
limit when the proportion of females tends toward the
primary female sex ratio:

a(n , n )m f
n(j) 5 lim , (A1)a n(n /n)rjf

with .n 5 n 1 nm f

Examples of limit functions na are given in figure 2. In
the two-sex block matrix, accounts for the$b 5 (b , ..., b )1 k

matings with

(n /n )Afi f
b 5 5 A/n .i fn fi

By the third assumption, and the block matrixb r n(j)/ji a

converges toward
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 1 2 j$ $X(0) Y n( )j$X (n) 5 , a

$O X(n) 

with . The dominant eigenvalue la(j) of$n 5 (n(j), ..., n(j))a a

the block matrix Xa is that of its block , and we obtain$X(n)

l (j) 5 l(n(j)). (A2)a a

In fact, what precedes proves that, under our assumptions,
the realized sex ratio converges toward the primary sex
ratio.
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