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Within food webs, species can be partitioned into groups according to various

criteria. Two notions have received particular attention: trophic groups

(TGs), which have been used for decades in the ecological literature, and

more recently, modules. The relationship between these two group concepts

remains unknown in empirical food webs. While recent developments in net-

work theory have led to efficient methods for detecting modules in food webs,

the determination of TGs (groups of species that are functionally similar) is lar-

gely based on subjective expert knowledge. We develop a novel algorithm for

TG detection. We apply this method to empirical food webs and show that

aggregation into TGs allows for the simplification of food webs while preser-

ving their information content. Furthermore, we reveal a two-level hierarchical

structure where modules partition food webs into large bottom–top trophic

pathways, whereas TGs further partition these pathways into groups of

species with similar trophic connections. This provides new perspectives for

the study of dynamical and functional consequences of food-web structure,

bridging topological and dynamical analysis. TGs have a clear ecological

meaning and are found to provide a trade-off between network complexity

and information loss.
1. Introduction
In nature, species in communities are connected by their predation links, and

these complex interactions can be represented by a network. The topology

of these food webs is non-random and can have a considerable influence on

their functionality [1,2], including their ability to persist. As for many complex

networks [3], the notion of a group (a collection of nodes with specific charac-

teristics) is a major topological feature of food webs [4–6], with important

functional implications [7,8]. However, this notion of group covers a large set

of definitions (trophic groups (TGs), modules, regular equivalence groups,

structural role groups) and methods (modularity maximization, Markov

chain clustering, statistical block modelling, spectral approaches), giving differ-

ent insights on network structure (see [9,10] for reviews on these notions). In

food-web ecology, groups have been identified mainly according to two distinct

definitions: modules and TGs (figure 1a,b), but we still do not know how these

two notions are related.

The notion of modularity (or community structure) refers to groups of nodes

interacting more frequently between themselves than with other nodes. Modular-

ity detection is challenging in view of its relation with network functionality [11].

For example, a modular structure can buffer the propagation of perturbations,

determining the stability or resilience of ecological networks [8]. Mechanisms

that give rise to modularity in food webs are not totally understood. Modules

have been related to a variety of attributes, from niche organization of species

and their diet [12] to phylogeny [13] or spatial segregation between species [14].

For example, in the food web of Chesapeake Bay, the split found between two
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Figure 1. Representation of different group detection methods for a hypothe-
tical food web: (a) modularity (three modules), (b) TGs method (five TGs) and
(c) AP method (three AP groups). Nodes of the same colour and with the same
numbers belong to the same group. This hypothetical food web has the top-
ology of an N-levels tree where each non-basal species has exactly d prey.
Different partitions of this example of food web (N ¼ 3, d ¼ 3, S ¼ 13
species) are shown: three modules, five TGs and three AP groups. In the general
case of a regular N-levels directed tree with in-degree d, the number of species is
S ¼ 1þ d þ � � � þ dN�1. The number of modules, TGs and AP groups are,
respectively, d, 1þ 1þ d þ � � � þ dN�2 and N. These numbers differ in
general, with more TGs than modules or AP groups. We can observe here
that AP groups correspond in this case to regular groups, based on the regular
equivalence definition.
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large modules corresponds closely to the division between

pelagic and benthic species [15].

The study of food-web modularity is only recent, and

historically, food webs have been mainly described in terms

of TGs, in relation to the notion of trophic relationships intro-

duced by Elton [16]. TGs are comprised of species that share

similar sets of prey and predators. Aggregation into TGs has

been used to simplify the representation of food webs, cir-

cumventing methodological difficulties induced by the

complexity of trophic relationships in empirical data [4,17],

and allowing the comparison of datasets and models of simi-

lar resolution [18]. In fact, food webs were for a long time

described at the TG level rather than at the species level

[19,20]. The simplification of food webs into TGs is also cen-

tral to the study of ecosystem dynamical and functional

properties [21].

Several methods have been developed to detect TGs in

food webs, based on two different notions. First, a set of

methods inherited from the notion of structural equivalence
[22]. Two nodes in a graph are said to be structurally equiv-

alent if they relate to the same group of nodes. This
assumption was then relaxed to allow nodes with similar

but not identical relations to be said to be structurally

equivalent. A classical method is to measure interaction simi-

larity between nodes and then use a hierarchical clustering

method (a stepwise classification process) to define structu-

rally equivalent groups. In ecology, the Jaccard index has

been used to define the amount of trophic overlap between

taxa [23,24]. The main limit of the use of hierarchical cluster-

ing methods is that the number of groups does not appear as

an emergent property, a threshold value for trophic similarity

delimiting the groups or for the number of groups itself has

to be preset.

A second method of detecting TGs in food webs is based

on the notion of regular equivalence, inherited from the con-

cept of its role in social sciences [25]. A group of regularly

equivalent nodes contains species that are connected to the

same set of groups containing regularly equivalent nodes.

Regular equivalence was introduced not to detect groups of

nodes with similar interaction patterns but to aggregate enti-

ties with the same role. Regular equivalence is classically

illustrated with the example of interactions in a hospital:

two nurses do not necessarily interact with the same people

(they can have different patients or interact with different

doctors) but they interact with similar types of people

(patients, doctors, etc.). Thus, nurses have the same role in

the hospital. The method of Luczkovich et al. [26] uses the

notion of regular equivalence in ecology to group species,

but the number of groups used for model selection has to

be predefined and it potentially creates groups of species

that do not share any trophic interactions. Block modelling

approaches introduce an objective criterion for model selec-

tion. In their seminal paper, Allesina & Pascual [5] use AIC

to select among models. In subsequent articles, Bayes factors

[14,27] or normalized maximum likelihoods [28] were used.

The main advantage of block modelling is the use of objective

criteria for model selection, implying that the number of

groups is not predefined. It however shares the same

limit as all methods using the notion of regular equivalence

by potentially aggregating nodes without any common

connection (figure 1c).

We propose here a new method of TG detection based on

structural equivalence in order to avoid the limits of regular

equivalence (lumping species without any common prey

or predator in the same group), but with the ability to deter-

mine the number of groups as an emergent property of

the system.

We then use the different notions of groups used in ecology

to understand whether food webs are better described when

grouped according to TGs or to modules, and whether

modules and TGs give opposite, similar or complementary

descriptions of food-web topology. While modularity is gain-

ing increasing interest in food-web studies [6,12,29], its

relationship with TG arrangements is unknown as both net-

work patterns have been studied independently. Detecting

how different network decompositions are combined in food

webs is important for understanding their structure and can

reveal new network properties. It is also critical to assess the

relevant and redundant features of network structure and to

move beyond a disconnected view of food-web patterns. It

has been shown that species aggregation into TGs did not

affect the perception of food-web response to top-predator

manipulation in an experiment [17]. Such result suggests that

food webs might be mostly structured in TGs.
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We therefore address here two different questions. First,

we propose an efficient method to detect TGs in food

webs. Second, using nine aquatic food webs of different resol-

utions, we compare these TGs to groups obtained by

modularity detection [15] and groups obtained by the model

of Allesina & Pascual [5], thereafter referred to as the AP

model. The AP model is a block modelling approach that

achieves the best compromise between the number of groups

(network complexity) and information loss, using AIC for

model selection. Depending on the structure of the considered

network, the AP model will detect modules (i.e. groups of

nodes interacting more frequently between themselves) or

groups of regular equivalent species. The point is that classical

methods for role detection create groups of regularly equival-

ent species (species in different groups are connected exactly

to the same set of groups), whereas the AP method creates

groups with group-specific connections to other groups. We

show that TGs give a reliable picture of food webs in regard

to information theory while preserving ecological significance,

as we obtain close correspondences between the TG model and

the AP model. This close matching does not hold when the

methods are applied to two social networks, the Zachary’s

karate club [30] and the social prison inmate [31]. By compar-

ing the trophic position of species in module and TG

arrangements, we reveal a previously undetected link between

TGs and modules: modules decompose the food web into dis-

joined vertical pathways of energy flow, and, within modules,

TGs are composed of species of similar trophic levels.
2. Material and methods
2.1. A model for the detection of trophic groups
A TG is usually defined as a group of species that interact with

similar prey and predators. We mathematically translate this

definition using the notion of trophic similarity [23] and the con-

ceptual framework of modularity detection [32]. The notion of

trophic similarity is related to the notion of structural equivalence.

It allows to avoid the drawback of regular equivalence where

species without any common interactions can be grouped in the

same TG. Using comparison to a random model, modularity

detection allows to obtain the number of groups as an emergent

property, which is not possible when hierarchical classification

methods are used to detect groups of structural equivalence.

The modularity of a given partition E (a particular arrange-

ment of the species in non-intersecting groups) in a network is

given by the difference between the within-groups link density

and its random expectation [33]:

M(E) ¼
XjEj
s¼1

ls
L
� ds

2L

� �2
 !

, (2:1)

where jEj is the number of elements in the partition (the number

of modules), ls is the number of links between nodes in the s
module, L is the total number of links of the food web, and ds

is the sum of degrees of species belonging to module s. The par-

ameter ls/L is the fraction of links inside module s (within-group

link density), and (ds/2L)2 is an approximation of this expected

quantity by chance alone.

For TG detection, we keep the comparison with a random

null model, but instead of using the proportion of within-

group links, our index is based on trophic similarity. The trophic

similarity of two species is their number of common prey and

predators divided by their total number of prey and predators.

We transpose this definition using an analogy with the modular-

ity index, by comparing the observed trophic similarity between
all pairs of species in the same group to its expected value in a

random graph. For a given partition E, our index is defined as

G(E) ¼
XjEj
g¼1

1

jgj
X
i:j[G
i,j

(T(i, j)� E(T(i, j))), (2:2)

where jgj is the number of nodes in group g, jEj is the number of

groups in the partition E. T(i, j) (and its expected value in a

random graph E(T(i, j))) is the ratio between the number of

prey and predators interacting with species i and j, and the

number of prey and predators interacting with species i or

species j:

T(i, j) ¼
jPi > Pjj þ j pi > pjj
jPi < Pjj þ j pi < pjj

, (2:3)

where Pi and pi represent, respectively, the set of predators and

prey of species i, jPi > Pjj is the cardinality of the intersection

of Pi and Pj (i.e. the number of prey and predators common

to species i and j ). The value of T(i, j) is directly obtained

from the in- and out-degrees of species i and j in the food web.

The computation of E(T(i, j)) is described in the electronic

supplementary material, S1.

Group detection is performed by maximizing the TG index

G(E) using a simulated annealing algorithm for each of the con-

sidered networks (table 3). The N_W computer program was

used to perform the computations [34].

2.2. Networks studied
Analyses were made on a dataset of nine food webs and two social

networks. Food webs were chosen for their low level of aggrega-

tion (i.e. most trophic interactions are described at the species

and genus level and not at the level of large TGs). The nine food

webs are Benguela [35], Bridge Brooke Lake [36], Carribean reef

[37], Chesapeake Bay [38], Créteil Lake (electronic supplementary

material, S3), Tuesday Lake [39], Carpinteria [40], DempsterSu [41]

and Ythan estuary [42]. The two social networks, the prison inmate

[31] and Zachary’s karate club [30] graphs, are classical examples

in social science studies. They were used to assess whether the

specific results we found for food webs were also relevant for

other kinds of networks. A specific focus was put on the Lake

Créteil food web to investigate the characteristics of the TGs

found by our method. The Lake Créteil food web was created on

the basis of a summer mesocosm study [4] conducted by

G. Lacroix and co-workers; we thus have a good knowledge of

the ecology of this food web.

2.3. Comparison between group arrangements of the
different detection methods

In order to assess whether food webs are better described when

grouped according to TGs or to modules, we compare the TGs

obtained with our method and the modules to the groups obtained

by the AP model. For both modularity and the AP model, we used

a simulated annealing algorithm to detect groups in the considered

food webs. To assess the correspondence between the different

group detection methods, we used a mutual information criteria

[33]. The normalized mutual information IEF between two par-

titions is defined as the ratio between the mutual information of

the partitions and the mean of their respective entropy [43]

IEF ¼
�
PjEj

i¼1

PjFj
j¼1 nEF

ij log (nEF
ij S=NE

i NF
j )

1
2�

PjEj
i¼1 NE

i log (NE
i =S)þ

PjFj
j¼1 NF

j log (NF
j =S)

� � : (2:4)

Here, S is the number of species, jEj and jFj are the number of

groups in partitions E and F, respectively, NE
i and NF

j are the

number of nodes in group i of partition E and group j of partition

F. Finally, nEF
ij is the number of nodes that are both in group i of



Table 1. The number of pairs of species belonging to the same groups but
without any common interactions is non-zero for the AP method and
almost zero for the TG method.

networks AP TGs

Creteil 0 0

DempsterSU 73 0

Tuesday Lake 11 0

Cheasapeake Bay 62 0

Ythan Estuary 62 0

Bridge Brook Lake 7 0

Caribbean reef 27 1

Carpinteria 39 1

Tuesday Lake 11 0
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partition E and in group j of partition F. The mutual information

between partitions E and F is equal to 1 if both partitions are

identical, and 0 if there is no matching.

2.4. Relationships between trophic groups and modules
We investigated the links between TGs and modules in three

ways: first by comparing the distribution of species’ trophic

level between these two types of groups, second by measuring

whether TGs were embedded in modules and third by character-

izing the contribution to modularity of species belonging to TGs

that were split across different modules.

2.4.1. Distribution of species’ trophic level in trophic groups and
modules

The trophic level of a species is defined as 1 plus the mean trophic

level of its prey, with the trophic level of basal species set to 0. For

all food webs, we calculated the variance in species trophic level

either within modules or within TGs. To test whether variance of

species trophic levels within modules differed from random expec-

tation, we used a null model approach. This null model distributes

species randomly in different modules, while keeping the number

of modules and their respective sizes as in the original network

(100 000 replications, p-value is the probability to obtain a higher

variance of trophic levels within the food web modules than

expected from the null model). To test whether variance of species

trophic levels within TGs differed from random expectation, we

used the same null model as described above, but with a

random attribution of species to TGs instead of modules (100 000

replications, in this case the p-value is the probability to obtain a

lower variance of trophic levels within the TGs than expected

from the null model).

2.4.2. Module diversity of trophic groups
To assess whether species affiliated to the same TG also belong

to the same module, we measured an index of module diversity

for TGs

Dg ¼ 1�
Xm

s¼1

gs

jgj

� �2

, (2:5)

where gs is the number of species of group g that belong to module s
(i.e. the cardinality of the intersection of g and s), and jgj is the

number of species in g (the underlying partition is implicit in this

notation). Dg is 0 if all species of a TG belong to the same module

and is 1 2 1/jgj when all species in the group belong to different

modules. These values are compared to a null model where the par-

tition into TGs is identical to that obtained with our model, but

where species are randomly distributed among modules while

keeping the same number of modules and their respective sizes as

in the original food web. Comparisons are made with 100 000

values of diversity obtained with the null model.

2.4.3. Participation coefficient of species to modules
We observed that each TG was in general embedded into a single

module. We tested whether species of TGs that were split across

different modules occupied a particular position within the mod-

ular structure. In order to determine the species’ contribution to

network modularity, we computed the participation coefficient

[44]. Based on the Simpson diversity index, the participation

coefficient measures the diversity of connections of species i to

the different modules of the network:

PCi ¼ 1�
Xm

S¼1

lis
di

� �2

: (2:6)

Here, m is the number of modules, lis is the number of links

between species i and the species of module s, and di is
the degree (number of prey and predators) of species i.
PCiPi equals 0 when all links of i are in its own module and is

1 2 1/m when links are uniformly distributed among modules.

Student’s t-tests are then used to compare indices found for

species in TGs belonging to different modules and species in

TGs belonging to only one module.
3. Results
3.1. The different aggregation methods are expected to

return different groups
This is shown using a simple network, a directed tree in which

all species except the basal species have the same number of

prey (figure 1). We can notice in figure 1 a major difference

between AP groups and TGs: in the case of AP groups, all

basal species are lumped together while this is not the case

for TGs. With AP groups, species can belong to the same

group even if they do not share any common predators

(table 1). In this particular topology, AP groups are equivalent

to groups found using a regular equivalence method [26].
3.2. Example of functional divisions in the food web of
Lake Créteil

In the food web of Lake Créteil, the TG method identifies 13

TGs. They tend to discriminate species according to trophic

level (either phytoplankton, zooplankton, carnivorous or

omnivorous) as well as body size, taxonomy and habitat

(table 2). Note that it is difficult to assess the relevance of

the group comprised of the trophospecies ‘Bacteria’, ‘DOM

and POM’ (dissolved and particulate organic matter) and

‘Biofilm’, as the ecological role of these constituents can be

different. This part of the network, which groups together

detrital and littoral components of the food web, is not well

known. Considering more precisely bacterial diversity and

biofilm composition could lead to a different result.

Using module detection [33], we observe that most species

within a TG belong to the same module (i.e. TGs are a sub-

partition of modules; figure 2 and table 3). Thus, within a

module, TGs interact mostly between themselves. Moreover,

we can appreciate in figure 2b that modules assemble TGs

along energetic pathways in the food web (vertical



Table 2. Groups obtained by our TG detection method in relation to group characteristics for the Lake Créteil food web. These groups are represented by the
corresponding colours in figure 2.

TGs group characteristics

Abramis brama, Rutilus rutilus, Acanthocyclops robustus omnivorous fish and large cyclopoids (blue-green)

Asplanchna girodi, Asplanchna priodonta, Thermocyclops crassus, Thermocyclops oithonoides carnivorous Rotifers and small cyclopoids (white)

Eudiaptomus gracilis, Eutytemora velox omnivorous calanoids (green)

Cephallodella sp., Chydorus sphaericus, Lecane bulla, Lecane luna, Lecane stichaea,

Lepadella sp., Testidunella patina, Chironomidae

benthic or littoral species and detritivorous or

bactivorous organisms (brown)

Hexarthra mira, Filinia longiseta rotifers consuming small algal cells and

bacteria ( pink)

bdelloid species, Bosmina coregoni, Bosmina longirostris, Brachionus angularis, Brachionus

calyciflorus, Brachionus quadridentatus, Keratella cochlearis, Keratella quadrata, nauplii of

Calanoida, nauplii of Cyclopidae, Polyarthra dolichoptera-vulgaris, Polyarthra major,

Pompholyx sulcata, Trichocerca sp.

small herbivorous zooplankton (dark green)

Ceriodaphnia dubia, Ceriodaphnia pulchella, Daphnia cucullata, Daphnia galeata, Daphnia

galeata � D. cucullata, Diaphanosoma brachyurum, Synchaeta pectinata

large herbivorous Cladocera ( purple)

DOM and POM, Bacteria, biofilm components of the detrital and littoral

pathway (orange)

Ceratium hirundinella, Nitzschia sp., Pediastrum boryanum, Synedra ulna large or protected, poorly edible, algae

(light purple)

Dictyosphaerium pulchellum, Navicula sp., Pediastrum duplex, Schroederia indica,

Staurastrum sp., Trachelomonas sp.

algae mainly consumed by graspers within

zooplankton (light blue)

Coelastrum spp., Colacium sp., Cosmarium sp., Cryptomonas sp., Desmodesmus quadricauda,

Oocystis lacustris, Scenedesmus acuminatus

edible algae consumed by herbivorous and

omnivorous zooplankton (dark blue)

Chroomonas sp., Crucigenia spp., Cyclotella ocellata, Monoraphidium contortum,

Tetraedron minimum

edible algae consumed by herbivorous zooplankton

(yellow)

Quadricoccus ellipticus, small undetermined unicells small phytoplanktonic species, highly edible algae

for filter feeders (red)

Table 3. Number of groups obtained using TG, modularity (M) and the Allesina & Pascual (AP) detection methods, with the degree of overlap between the
different partitions. P sets the p-value of the difference of participation coefficients between species in TGs belonging to different modules and species in TGs
belonging to only one module. D is the p-value of the difference in diversity of modules for TGs compared with a null model. The asterisk (*) symbol
corresponds to food webs for which all TGs are in a single module. Hence, statistical analyses on P were not relevant in this case.

species
(links)

TG AP M TG-AP
overlap

module-AP
overlap

P D

Benguala [35] 29 (203) 7 7 3 0.841 0.397 0.0459 ,1024

Bridge Brooke

Lake [36]

75 (553) 12 9 3 0.92 0.631 * ,1024

Carribean reef [37] 249 (3313) 46 28 3 0.775 0.365 ,1024 ,1024

Chesapeake Bay [38] 33 (72) 13 7 3 0.745 0.428 0.4793 ,1024

Créteil Lake SI3 67 (718) 13 12 3 0.922 0.4738 0.0194 ,1024

Tuesday Lake [45] 73 (410) 17 11 2 0.834 0.449 * ,1024

Carpinteria [40] 128 (2290) 37 28 3 0.872 0.379 0.289 ,1024

DempsterSu [41] 107 (966) 25 12 3 0.7129 0.410 ,1024 ,1024

Ythan Estuary [42] 92 (409) 26 13 3 0.755 0.317 ,1024 ,1024
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component). The first module (left part of figure 2b) brings

together food chains involving small herbivorous zooplankton

and calanoids. The second module (middle part of figure 2b)
brings together food chains involving large filter feeders (Cla-

docera). These two modules are mainly pelagic and separate

energetic pathways according to body size and behaviour of



(b)(a)

Figure 2. Representation of the Lake Créteil food web partitioned with the TG method (a,b), and module detection (b). (a) TGs are delimited by coloured discs
whose sizes are proportional to the number of species in each TG, and species are represented by small grey circles. (b) Modules are delimited by grey rectangles,
and species are represented by small circles whose colour corresponds to their TG in (a). The vertical dimension corresponds to the species’ trophic levels (b) and the
average trophic level of TGs (a). The compositions and characteristics of the TGs for the Lake Créteil food web are described in table 2.
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herbivores (small versus large graspers and filter feeders). The

third module (right part of figure 2b) brings together trophic

pathways dominated by organisms that are mainly omnivor-

ous and are able to feed on littoral and benthic organisms.

Hence, in the food web of Lake Créteil, modules appear as

assemblages of trophic chains that link TGs with common

major characteristics (size, behaviour, edibility, spatial niche).
3.3. Comparison between group arrangements of the
different detection methods

In the nine empirical food webs considered, TG always leads

to partitions with a higher number of groups than modularity

(table 3). Indeed, modularity leads to partitions with a very

low number of modules, suggesting that the number of inde-

pendent subnets is limited (table 3). The number of groups

obtained with the AP method is always higher than with

modularity and lower than with TG (with one exception for

the Benguela food web; table 3).

Correspondence indices between groups obtained by

TG and AP are significantly higher than correspondence

indices between modularity and AP (paired Student’s t-test,

p , 0.001). The high degree of overlap between TG and AP

(table 3, correspondence close to 1) suggests that an important

part of the information carried by food-web structure can be

attributed to TGs. Strikingly, and despite totally different

goals, the AP method (looking for the most informative par-

titions) and the TG method lead to similar results (table 3)

even if the AP method still groups species without any

common interaction, whereas the TG method does not

(table 1). This close match between the two methods seems

to be specific to food webs. Indeed, when comparisons are

made on the two social networks, the Zachary’s karate club

and the prison inmate, correspondence indices are much

lower with values of 0.531 and 0.478, respectively.
3.4. Relationships between trophic groups and modules
3.4.1. Distribution of species’ trophic level in trophic groups and

modules
Food-web representations combining trophic levels of species

and their affiliation to modules and TGs (figures 2 and 3;

electronic supplementary material, S2) suggest that, whereas

species in the same TG tend to occupy the same trophic level,

species in the same module often belong to different trophic

levels. We computed the variance of species’ trophic levels

within either modules or TGs. In all the food webs studied,

the average variance of species’ trophic levels in modules

was always higher than in TGs ( p , 1024 for all networks).

Furthermore, the variance of trophic levels of species belong-

ing to the same module was higher than what was expected

by chance alone ( p , 1024 for all food webs). The opposite

pattern was found when considering the variance of trophic

levels of species sharing the same TGs ( p , 1024 for all

networks). By definition, species in a module are highly con-

nected. As most trophic relations occur between species of

different trophic levels, this could explain why species in

the same module tend to belong to different trophic levels.

Therefore, modules reflect particular energetic pathways,

representing parallel trophic chains.
3.4.2. Modules’ diversity of trophic groups and participation
coefficient of species to modules

We observe that species in a TG tend to belong to a same module

(figures 2 and 3; electronic supplementary material, S2). Thus,

TGs tend to be embedded in modules. For all food webs, the

average module diversity Dg of TGs was close to 0 and belonged

to the 5% lowest values generated from the null model. This

highlights a hierarchical two-level structure of food webs,

where a partition into modules is further partitioned into TGs.



(e) ( f )

(b)(a)

(c) (d )

Figure 3. Representation of the Tuesday Lake (a,b), DempsterSu (c,d) and Ythan Estuary (e,f ) food webs, with species sorted according to their TGs (a,c,e) and their
modules (b,d,f ). Same conventions as in figure 2.
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Although striking, this arrangement of TGs into modules

is not perfect. Species of a given TG are in some instances

dispatched in different modules. The mean participation coef-

ficients to modules of species in TGs dispatched in different

modules are in most cases significantly lower than species

in groups that belong to a single module. Indeed, in most

food webs, the species of TGs that are split in several modules

are those that contribute the least to the modular structure of

the food webs (table 3).
4. Discussion
Thanks to the development of a new algorithm to identify

TGs in food webs, our study reveals two important features

of the structure of empirical food webs. First, we show that

lumping species according to TGs allows the simplification

of food webs while preserving the information carried by

the initial network structure. Second, by considering TGs
and modules together, we put forward a previously unnoticed

pattern of organization of food webs: modules are composed

of species from different trophic levels and are further parti-

tioned into TGs; they represent energetic pathways linking

TGs from the bottom to the top of the food web.
4.1. An algorithm to identify trophic groups
Whereas the concept of TGs is widely used in the ecological lit-

erature since Elton [16] and Lindeman [46], the characterization

of TGs is usually based on (subjective) expert knowledge. In

the existing methods of food-web aggregation into TGs

[23,24], the number of TGs is defined by the user and is not

an emergent property of the network. Using the methodology

developed for modularity indices, our method of TG detection

circumvents previous limitations [5,47] where the ecological

meaning of the partitions returned does not come from the

method itself. By contrast, our method is based on the
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ecological notion of trophic similarity, and by extension on the

notion of nodes with similar patterns of connections.

4.2. Trophic groups: main underlying structure of food
webs?

The TG method and the AP method detect groups according to

totally different criteria. The AP method aims to find partitions

corresponding to the best trade-off between information loss

and reduction of complexity using the AIC, without any

notion of ecology. The TG method finds clusters of species

with similar sets of prey and predators. The match found

between the partitions returned by the two methods shows

that TGs support a large part of the information carried by

the underlying structure of the food web, as given by the

AP method. The relevance of species’ aggregation into TGs

has already been suggested to reflect functional properties

[4,17,21,48] or to identify structural patterns [14]. We highlight

here that food-web decomposition into TGs aggregates species

with minimal loss of information while keeping a clear ecologi-

cal meaning, and with the potential to reflect the functioning of

the network. The relevance of such aggregation criteria

(groups of nodes interacting with similar groups of nodes)

seems very general for food webs. On the other hand, the

aggregation process did not prevent information loss when it

was applied to the two social networks. An intuitive expla-

nation might be that species with similar prey and predators

do not predate on each other while in social networks, actors

with similar relationships tend to know each other and are

often not precluded from interacting.

4.3. Trophic groups and modules: complementary views
of food-web structure

Though we show that the notion of TG prevails in food webs,

our study also confirms that modules are an important feature.

Previous studies have already shown that food webs are more

modular than random networks [12]. This suggests patterns

of organization similar to those observed in other biological

networks (gene–protein, plant–pollinator, neuronal) and in

some small-world networks [49]. While modular patterns

still need to be explained in food webs, we observe that mod-

ules represent parallel pathways of energy from producers to

consumers, delimiting distinct food chains (figures 2 and 3;

electronic supplementary material, S2). This is in accordance

with previous results [12] showing that species in the same

module (according to the notion of directed modularity)

are globally located on trophic chains coming from similar

basal species. We reveal that the variance of species trophic

levels within modules is higher than expected by chance. The

opposite result is found when groups are determined only

accordingly to prey or predator similarity [12].

Despite having intuitively nearly opposite definitions

(modules represent groups of species interacting mostly with

one another, whereas TGs correspond to groups of species

interacting with other well-defined groups of species), mod-

ules and TGs are linked and provide complementary pictures

of food-web structure. It appears that food webs present a

two-level hierarchical structure, with each TG belonging glob-

ally to a single module. The existence of network hierarchical

structure has already been described for social networks [50].

Some TGs are, however, sometimes split across several mod-

ules. Species of such TGs share the same neighbourhood, as
they are in the same TG, but belong to different communities

(modules). These species are connected more diversely to mod-

ules than other species, therefore, they potentially bridge

different modules. As the modular structure limits the propa-

gation of perturbations [8], species bridging different

modules could play a key role by interconnecting distinct sub-

nets of energetic pathways, and allowing different ecological

processes (perturbations, trophic cascades, etc.) to shift from

one module to another.

4.4. Implications for future research
The functional implications of modularity are currently widely

explored [8,51], but little is known about the functional

implications of the TG structure. Indeed, while modules are

characterized by a high density of within links, the implications

of the architecture defined by TGs (few links within TGs and a

large number of links between some TGs) have not been

addressed. TGs are often used as a simplification, making the

system more readable, sometimes as a consequence of external

constraints (spatial segregation [14]), but the functional impli-

cations of TG patterns are worth exploring. For example, we

still do not know how the dynamics of TGs is related to the

individual dynamics of their component species.

Species richness within TGs could be considered as func-

tional redundancy. The deletion of a whole group might lead

to the loss of an entire set of specific connections, which could

potentially have dramatic effects on system properties. As

many topological studies [52–55] focus on the detection of

key species in networks, the determination of the aggrega-

ted network of TGs addresses the question in a new way

by considering potential key species as elements of TGs

characterized by a low diversity.

As food-web descriptions are becoming more and more

precise—recent published food webs contain several thou-

sand links the reduction in complexity will become a

critical issue. Our approach has the advantage of delineating

TGs in such a way that complexity is reduced while keeping a

clear ecological meaning. However, we need to know the

entire network to simplify it. The next step will be to consider

the correspondences between the biological traits of species

within and between TGs, in order to develop methods able

to reconstruct TGs and their links using species attributes.

Addressing this question may improve our comprehension

of the parameters involved in the trophic niche space (set of

ecological parameters determining the trophic relationships

of species). Several parameters, such as size [56], phylo-

genetic relationships [13,27] or behaviour [57] have been

already considered. Even if they are limited to trophic

relationships, these studies might provide a useful tool for

the generic classification of species.

Improving our comprehension of network simplification

is essential to address the structure–function relationship in

food webs. As modelling approaches cannot encompass the

entire complexity of food webs, food-web simplification via

TG detection provides a trade-off between consistency and

mathematical tractability, relating structural properties and

functional issues.
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