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a b s t r a c t

Competition between individuals for resources which are limited and diverse in composition is the
ultimate driving force of evolution. Classical studies of this event contend that the outcome is a
deterministic process predicted by the growth rate of the competing types—a tenet called the Malthusian
selection principle. Recent studies of competition indicate that the dynamics of selection is a stochastic
process, regulated by the population size, the abundance and diversity of the resource, and predicted
by evolutionary entropy—a statistical parameter which characterizes the rate at which the population
returns to the steady state condition after a random endogenous or exogenous perturbation. This tenet,
which we will call the entropic selection principle entails the following relations:

(a) When resources are constant, limited and diverse, variants with higher entropy will have a selective
advantage and increase in frequency.

(b) When resources undergo large variations in abundance and are singular, variants with lower entropy
will have a selective advantage and increase in frequency.

This article delineates the analytic, computational and empirical support for this tenet.We showmoreover
that the Malthusian selection principle, a cornerstone of classical evolutionary genetics, is the limit,
as population size and resource abundance tends to infinity of the entropic selection principle. The
Malthusian tenet is an approximation to the entropic selection principle—an approximation whose
validity increases with increasing population size and increasing resource abundance. Evolutionary
entropy is a generic concept that characterizes the interaction dynamics of metabolic entities at several
levels of biological organization: cellular, organismic and ecological. Accordingly, the entropic selection
principle represents a general rule for explaining the processes of adaptation and evolution at each of
these levels.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Darwin’s evolutionary model of variation, heredity and selec-
tion, clearly distinguished between the processes which occur on
a generational time scale – the cooperation between parental alle-
les in an organism, and the processeswhich unfold on an ecological
time scale – the competition between variant types in the popula-
tion for the available resources.

Mendel’s laws of particulate inheritance, proposed in 1860,
have completely resolved the problem of allelic cooperation. The
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laws refuted the dominant model based on the fusion or the
blending of parental heritabilities and was finally accepted almost
80 years after its promulgation when it was established that the
rules of blending inheritance – the intuitively plausible tenet –
was essentially a limiting case of the Mendelian rules. Formally,
the theory of blending inheritance is the limit N → ∞, where
N denotes the number of alleles governing a trait, of the laws
of particulate inheritance (Fisher, 1930). Accordingly, the rules
derived from the blending theory are an approximation to the
Mendelian laws, an approximation whose validity increases as the
number of alleles determining a trait increases.

The blending theory was largely derived from the observation
that in phenotypic characters such as size, offspring are generally
intermediate between their parents. This empirical fact which was
familiar to most naturalists in Darwin’s time was sufficiently con-
vincing to discredit alternative models such as the theory of par-
ticulate inheritance. Although the rediscovery of Mendel’s laws by
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de Vries and Correns in 1900 was a sharp refutation of the blend-
ing theory, the particulate model was only accepted after Fisher
showed analytically that blending inheritance is an approximation
of Mendel’s atomic model of genotypic transmission.

Theproblemof competition betweengenotypes – the ecological
complement of allelic cooperation – also bore Fisher’s signature.
Fisher realized that any analytic model of the Darwinian argument
required both a quantitative depiction of the principle of heredity—
the problem which Mendel had resolved, and a mathematical
characterization of the principle of selection.

The selection principle Fisher proposed was essentially a for-
malization of Darwin’s notion of the ‘struggle for survival’, an idea
derived from his reading of Malthus’ work on populations.

The Fisherian model in its modern incarnation considers com-
petition between a large structured population of effectively infi-
nite size (the incumbent), and a variant population of small size
(the invader). The incumbent is assumed to be at demographic
equilibrium, that is the distribution of states amongst population
members is invariant over time. At demographic equilibrium, the
total population size will increase at a rate – the intrinsic rate of
increase or Malthusian parameter – which is a function of the in-
dividual birth and death rates of the population members.

The model assumes that difference between the demographic
properties of incumbent and invader are small and resource abun-
dance is unlimited. The outcome of competition can be character-
ized in terms of what is now called as:
The Malthusian selection principle. The outcome of selection is a
deterministic process predicted by the relative intrinsic rate of
increase of invader and incumbent.

According to this principle, the selective advantage of a type,
denoted by s, is given by

s = 1r. (1)

Here1r = r∗
− r , where r and r∗ are the intrinsic rate of increase

of the incumbent and the variant types respectively.
The Malthusian selection principle has become a mainstay

in evolutionary genetics and evolutionary ecology, Roff (1992),
Stearns (1992), Charlesworth (1994) and Rand et al. (1994). The
Malthusian parameter and its various surrogates, such as the
net-reproduction rate, the basic reproduction number, and the
expected number of adult offspring, constitute the decisive and
organizing variable in several evolutionary contexts.

Populations may be structured in terms of state variables such
as age, size or behavioral traits. Accordingly the evolutionary
contexts to which the Malthusian principle pertains cover a large
spectrum: the evolution of senescence, Hamilton (1966) and
Charlesworth (1994); the spread of pathogens, May et al. (2001)
and Fernebro et al. (2008); the spread of altruism and the evolution
of cooperation, Hamilton (1964), Rousset and Ronce (2004) and
Lehmann and Keller (2006).

The analytic study of natural selection in these evolutionary
contexts often ignores factors such as the heterogeneity of the en-
vironment, and the impact of this factor on competition between
the incumbent and the variant types in a population. The environ-
mentwas defined by a homogeneous inert resource, and the organ-
isms as active agents appropriating and investing resources into
net-offspring production.

Malthusian selectionwas determineduniquely by the efficiency
of the organism to transform a homogeneous inert resource into
maintenance and reproduction. Accordingly, the capacity of the
organism to acquire resources was never considered a critical
determinant of selective outcome.

Lewontin (1982) underscored the limitation of the organ-
ism–environment dichotomy which these Malthusian models
implicitly invoked by specifying an intrinsic reciprocity of the or-
ganism–environment interaction. This reciprocity entails that or-
ganisms select and modify the environment they inhabit, whereas
the environment responds by imposing constraints on the devel-
opment and expression of the different genotypes.

According to this organism–environment dichotomy, the selec-
tive advantage of an organism, that is the capacity to contribute to
the ancestry of future generations, will depend on both its capac-
ity to appropriate resources from an environment which may be
highly heterogeneous, and its efficiency in transforming these ac-
quired resources into demographic components which may show
large temporal variation in the size or age at which individuals
reproduce and die.

This article integrates this conceptual framework in a new class
of quantitative models that study competition between related
populations under various classes of ecological constraints.We for-
malize the reciprocity of the organism–environment interaction
by considering both the heterogeneity of resources, the variation
in their abundance, and the interaction of these factors on pop-
ulations which may be heterogeneous in age, size and metabolic
condition.

Our analysis is based on the ergodic theory of dynamical
systems. This mathematical formalism, which has its roots in
the theory of stochastic processes and non-equilibrium statistical
mechanics, was originally introduced in evolutionary biology to
analyze the dynamics of selection in age-structured populations,
Demetrius (1974). The formalism has been extended to analyze
evolutionary processes in molecular, cellular and ecological
networks, Demetrius (1997) and Demetrius and Gundlach (1999).
One of the main results which has emerged from this class of
models is the analytical fact that robustness, the rate at which a
population returns to the steady state condition after a random
perturbation, can be characterized by a statistical parameter, called
evolutionary entropy, a measure of the diversity of the pathways
of energy flow between members of the population. Demographic
systems consisting of organisms who reproduce at the same time
and at a single stage in their life-history – semelparous organisms
– have zero entropy. Populations made up of organisms who
reproduce at several distinct stages in their life cycle – iteroparous
organisms – have positive entropy, Demetrius (1974).

In this article we will integrate the ergodic theory of dynamical
systems and the theory of diffusion processes to analyze the
dynamics of invasion in environments where resources vary in
abundance and diversity. The models proposed in this paper apply
to cellular, demographic and ecological systems, as the analysis
in Demetrius et al. (2004) imply. However, the macroscopic
parameters that are derived from the ergodic theory analysis
do not always admit tractable analytic expressions in studies
of cellular and ecological models, and in demographic models
where the state variable is given in terms of size. Hence, to
simplify the computational aspect of the theory and to emphasize
the more conceptual elements, we will restrict our exposition
to demographic models and assume that the state variables are
described in terms of age.

We assume throughout that the resource is structured and
that the interaction between the organism and the environment
is reciprocal. We will impose the following conditions on the
incumbent and invader population:

(a) The incumbent population is large and of finite size, the invader
population is of small size.

(b) Differences in the demographic characteristics of incumbent
and invader are small.

(c) The incumbent population is genetically homogeneous.

When the condition of demographic equilibrium prevails, the
invasion process will be determined by total population size,
whose dynamics is described in terms of the dominant and
subdominant eigenvalues of the matrix that characterizes the
equilibrium state.
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In view of the reciprocity of the organism–environment inter-
action, demographic equilibriumwill rarely be attained, hence the
classical invasionmethods are no longer pertinent in analyzing the
competition dynamics. The problem of invasion in systems whose
steady states are non-equilibrium configurations was resolved by
invoking the ergodic theory of dynamical systems to character-
ize the steady states in terms of a new phase space, the space of
genealogies, Demetrius (1997). The invasion process will be regu-
lated by the number of typical genealogies, called the effective pop-
ulation size. The asymptotic rate of increase of the effective size is
described by evolutionary entropy.

Wewill show that the outcome of competition between incum-
bent and invader can be characterized by what we call:
The entropic selection principle: The outcome of selection is a
stochastic process predicted by evolutionary entropy and is con-
tingent on environmental variables, the resource abundance and
the resource diversity.

According to the entropic selection principle, evolutionary en-
tropy determines the invasion exponent, and the selective advan-
tage is now given by

s = −


φ −

γ

M


1S. (2)

Here 1S = S∗
− S, where S and S∗ denote the entropy of the in-

cumbent and variant type.
The quantity φ and γ are functions of the individual birth and

death rates. They are defined as the first and the third moments of
a random function defined on the space of genealogies. We will
show that these two demographic variables are correlated with
environmental or resource parameters. The quantity φ is called
the reproductive potential. It is correlated with variations in the
resource abundance: φ < 0 corresponds to a constant resource
abundance, φ > 0 a variable resource abundance. The quantity
γ is called the demographic index and characterizes the degree of
heterogeneity of the resource: γ < 0 describes low heterogeneity
– a singular resource, γ > 0 describes high heterogeneity – a
diverse resource.

The outcome of selection, as described by Eq. (2) can be quali-
tatively described as follows:

(a) When resource abundance is constant and diverse, variants
with higher entropy have a selective advantage and will in-
crease in frequency.

(b) When resource varies in abundance and is singular, variants
with lower entropy have a selective advantage and will in-
crease in frequency.

The Malthusian selection principle as formalized by Eq. (1), is
expressed uniquely in terms of the asymptotic growth rate. This
is the rate of increase of total population size at demographic
equilibrium. The model assumes that resource is unlimited and
population size large, effectively infinite.

The entropic selection principle, by contrast, is formulated in
terms of entropy. We will show that the Malthusian tenet is
a limiting case of the entropic selection principle. The relation
between the two tenets can be formally annotated as follows:

The Malthusian selection principle is the limit, as M → ∞, R →

∞, where M denotes population size and R denotes resource
abundance, of the entropic selection principle.

Accordingly, the Malthusian principle is an approximation to the
entropic selection principle—an approximation whose validity in-
creases with increasing population size and increasing resource
abundance.

Earlier studies of the invasion process, Demetrius (1997),
imposed conditions of finite size and resource abundance, but
ignored the effects of resource diversity. The extensions of the
Fig. 1. Relation between resource abundance R, population size M and selective
advantage s.

Malthusian selection principle to incorporate resource constraints
and the effect of size can be expressed in the following terms:

When population size is finite and resource abundance is un-
limited, the measure of selective advantage is given by

s = 1r −
1
M
1σ 2. (3)

Here r and σ 2 denote the intrinsic rate of increase and the demo-
graphic variance.

Furthermore, as can be observed from Eq. (2), when resource
abundance is limited and population size is infinite, the index of
selective advantage becomes

s = −φ1S. (4)

Computational and empirical studies in support of (3) and (4)
are described in Kowald and Demetrius (2005) and Ziehe and
Demetrius (2005). The relation between the four measures of
selective advantage is described in Fig. 1.

The blending theory of inheritance and the Malthusian selec-
tion principle are tenets which have played a critical role in evo-
lutionary genetics. Both theories are valid under certain limiting
conditions, the first when the number of alleles is large, effectively
infinite; the second when resource abundance R, and population
size M are both infinite.

The blending theory owes its 80 year influence to the fact that
it was consistent with the inheritance of quantitative traits. The
theory was only rejected when it was established that blending
inheritance is simply a degenerate case of Mendel’s particulate
model.

The Malthusian principle of selection currently represents the
dominant paradigm in studies of the evolution of life-history.
The principle also undergirds epidemiological studies through the
notion of R0, the net-reproduction rate, and is a critical parameter
in studies of the evolution of cooperation through the concept of
inclusive fitness.

The dominance of the Malthusian paradigm emanates partly
from the observation that the in vitro growth rate of a population
often predicts its invasibility in in vivo conditions. The fact
that the Malthusian model is a limiting case of the entropic
selection principle, however, suggests that the apparent predictive
power of the Malthusian principle derives primarily from the
fact that both population size and resource abundance are large,
effectively infinite, in the experimental conditions which seem to
be consistent with the Malthusian tenet.

2. Historical overview

The twomost central elements of the neo-Darwinian argument
are the principle of inheritance and the principle of selection.
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Mendel’s discovery of the quantitative rules relating genotypewith
phenotype resolved the problem of inheritance. The integration
of Mendel’s theory in evolutionary genetics in 1920 provided
an incentive for evolutionary theorists to elucidate the laws
of selection, and thereby develop a coherent framework for a
quantitative model of Darwin’s theory.

Wright (1945) addressed the problem of selection in a series
of models which studied competition between related types in a
population. These models of selection ignored factors such as age,
fecundity and population size, and focused uniquely on differences
in viability. Viability selection models now form the main core of
classical population genetics. The main results of these models are
described in texts such as Crow and Kimura (1970) and Ewens
(2004). Kimura has built on the earlier studies of Wright by
systematically integrating themathematical formalismof diffusion
processes in models of population genetics. Extensions of these
models by Gillespie (1974) have been very influential in studies
of genetics models of finite size.

The Wright–Kimura–Gillespie models introduced a stochastic
component in population genetics. However, the analysis remains
embedded within the framework of classical viability selection
and ignored both the demographic structure of populations and
the effect of resource abundance and resource diversity on the
dynamics of selection.

The integration of demographic structure in studies of selection
is primarily due to Fisher (1930), where the notion of Malthusian
parameter was first introduced. The invasion dynamics of struc-
tured populationswere later developed in studies by Charlesworth
and Williamson (1975), Pollack and Kempthorne (1970), Metz
et al. (1992) and Houston and McNamara (1999), among others.
Although these studies discussed the effects of resource abundance
on the dynamics of selection, this aspect was first systematically
considered by MacArthur (1962). The MacArthur models however
ignored demographic structure.

The r − K models of selection which were essentially based
on Mac Arthur’s analytic studies of selection in density dependent
populations, represented the effect of the environment on the
population dynamics uniquely in terms of its carrying capacity K .
The heterogeneity of the environment, the demographic structure
of the population and the reciprocity of the organism–environment
interaction played no role in these studies. The limitations of the
r − K class of models have been emphasized through empirical
studies of the invasion process, Lawton and Brown (1986). These
studies show that the amplitude of population fluctuations is often
the critical determinant in predicting the outcome of invasion.

These observations have led to the study of more complex
models of the invasion process, see for example Kisdi and Geritz
(1999), Dieckmann and Ferrière (2004), Leturque and Rousset
(2002) and Rousset and Ronce (2004). The studies concern
structuredpopulations inwhich individual fecundity andmortality
rates depend on population size and environmental variables, and
in studies of cooperation, the parameter relatedness.

The discrete time models of these invasion processes param-
eterize individuals in terms of their age, size or some behavioral
trait. The systems are assumed to be in demographic equilibrium.
In this case, the dominant eigenvalue of the process determining
the steady state behavior represents the critical parameter. This
quantity describes the invasion exponent, the rate of increase of
the total population size.

The conditions of demographic equilibrium do not in general
prevail in systems which involve interactions between a popula-
tion and an environment whose resources may be heterogeneous
in composition and variable in abundance. The organism–enviro-
nment dichotomy, as articulated in Lewontin (1982), emphasized
the reciprocal nature of this interaction. This reciprocity entails
that at steady state, population processes may be far from demo-
graphic equilibrium; consequently characterizing the invasion ex-
ponent in terms of the eigenvalues of the relevant matrices may
not provide a valid predictor of the outcome of competition.

Demetrius (1974), in studies of age-structured populationmod-
els, showed that the non-equilibrium steady state of population
processes can be analyzed by appealing to the ergodic theory of
dynamical systems. In these models, the phase space described
by an age distribution is replaced by a phase space consisting of
genealogies—a recording of the successive ancestors of a particu-
lar individual which at time zero is in the first age group. The state
of the population is an invariant probabilitymeasure on the config-
uration space of genealogies. In the ergodic theory formalism, the
dynamical entropy of the probabilitymeasure defined on the space
of genealogies is now the critical parameter. This entropymeasure,
called evolutionary entropy, is the rate of increase of the ‘typical’
number of genealogies generated by the population process.

The ergodic theory formalismwas adduced to derive a newclass
of population variables – reproductive potential, demographic
index – to analyze the non equilibrium behavior of population
processes. The formalism is also applicable to structured popula-
tions parameterized in termsofmorphometric or behavioral states,
Demetrius et al. (2004).

Ergodic theory was later integrated with the theory of diffusion
processes to study the invasion dynamics of structured population
of finite size, Demetrius (1997), Demetrius and Gundlach (1999)
and Demetrius et al. (2004). The analysis described in this
paper is the natural extension of the ergodic theory-diffusion
processmethods to study competition in organism–environmental
interactionswhere resourcesmay vary in abundance and diversity.

3. Structured populations:macroscopic parameters andmicro-
scopic dynamics

All natural populationsmanifest a variability in the age atwhich
individuals reproduce and die. This heterogeneity has its origin
in the molecular processes that encode an individual’s ontogeny.
In populations of cells, the heterogeneity is a consequence of the
randomized distribution of metabolic components – proteins and
other molecules – which occurs when the cell divides. This means
that a clone of cells consisting of genetically identical individuals
will show a variability in their demographic and physiological
properties. The individual cells in the clone will differ in terms
of their metabolic constituents and size, and hence the clone will
exhibit a variability in the rate at which the individuals traverse
the different stages of the cell cycle.

In multicellular organisms, heterogeneity is derived from the
random deviations of the embryonic process from its prescribed
ontogenic path. Hence demographic variability is not just a prop-
erty of cellular systems and primitive organisms. It is also observed
in human populations as indicated by the phenotypic differences
observed in genetically identical twins.

These observations entail that demographic heterogeneity is a
universal property of all metabolic replicating entities. Hence any
genetically homogeneous population will be characterized by a
variability in the developmental state at which individuals repro-
duce and die (Schmalhausen, 1949). Heterogeneity in survivorship
and fecundity is thus an intrinsic feature of all replicating entities.
This variability in life cycle is highly related to the adaptive prop-
erties of the population, that is to its persistence and to the ca-
pacity of individual organisms to appropriate resources from the
environment and to transform the resources into metabolic work
and net-offspring production. The analytical characterization of
this life-cycle variability is thus critical in any study of the adap-
tive and evolutionary dynamics of populations.
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3.1. Discrete and continuous models

We consider a population in which the state of the individuals
are parameterized in terms of some demographic or physiological
state. Let ui(t) denote the number of individuals in state i at time
t , where 1 ≤ i ≤ d.

The change in the distribution ũ(t) = [u1(t), . . . , ud(t)] can be
described by the discrete dynamical system

ũ(t + 1) = A(t)ũ(t). (5)

Here A(t) =

aij(t)


, where aij(t) ≥ 0. The elements aij(t) are the

individual transition rates between state i and state j.
The analysis in this paper will be restricted to models in

which the individuals are parameterized by their age and the
transitions aij(t) denote age-specific birth and death rates. In this
case the matrix A(t) is a Leslie matrix. The first row in the matrix
describes the age-specific birth rates, and the off-diagonal terms
the age-specific survivorship rates. The elements bi(t) denote the
probability that an individual in age class i survives to age class
i + 1. The quantities mi(t) denote the mean number of offspring
produced by individuals in age class i.

The continuous analogue of Eq. (5) is specified by considering
the function u(x, t), the number of individuals of age x at time t .
The population size N(t) is now given by

N(t) =


∞

0
u(x, t)dt.

The changes in the age distribution u(x, t) are determined by the
age-specific death rate µ(x,N), and the age-specific birth rate
m(x,N) which both depend on population size. The dynamics
u(x, t) is given by
∂u
∂x

+
∂u
∂t

= −µ(x,N)u(x, t),

u(0, t) =


∞

0
u(x, t)m(x,N)dx.

We assume that the system has attained a steady state where the
population is described by an age-specific death rate µ(x) and an
age-specific birth ratem(x).

Let l(x) denote the age-specific survivorship function, that is the
probability that an individual born at age zero survives to age x. The
net-reproductive function V (x) is given by

V (x) = l(x)m(x).

The function V (x) represents the individual or the microscopic
parameters that define the population process. The ergodic theory
of dynamical systems and the formalism of statistical mechanics
can be used to generate a class of macroscopic variables from
the net-reproductive function V (x). These macroscopic variables
are essentially statistical averages generated by a probability
distribution defined in terms of V (x). This perspective gives
a comprehensive approach towards the evolutionary entropy
concept, and the derivation of standard population variables, such
as population growth rate and generation time.

3.1.1. Evolutionary entropy
Evolutionary entropy S is given by

S = −E [log p(X)] ,

where X is the random variable associated with a distribution p(x)
defined in terms of the net-reproductive function V (x). Hence,

S = −


∞

0
p(x) log p(x)dx.

Two classes of distributions can be characterized. One is given
by considering the net-reproduction rate, R0 defined by
R0 =


∞

0
V (x)dx.

The distribution in this case is given by p(x) =
V (x)
R0

.
The second distribution is obtained by considering the popula-

tion growth rate parameter r , which is the unique real root of the
equation

1 =


∞

0
exp(−rx)V (x)dx. (6)

The distribution in this case is given by p(x) = exp(−rx)V (x).
It is a well known fact that the net-reproduction rate R0 and the
population growth rate r are related. We have

R0 > 1 ⇔ r > 0,
R0 = 1 ⇔ r = 0,
R0 < 1 ⇔ r < 0.

In this articlewewill deal uniquelywith the distribution p(x) =

exp(−rx)V (x). The quantity p(x) describes the probability that
the mother of a randomly chosen newborn belongs to age class
(x, x + dx). Hence the entropy S represents the uncertainty in the
age of the mother of a randomly chosen newborn.

Fig. 2(A) describes the net-reproductive function of an annual
plant (low entropy) where reproduction is concentrated at a single
stage of the life cycle, and a perennial plant (high entropy) where
reproduction occurs at several distinct stages of the life cycle.

Consider the expectation T = E(X) given by

T =


∞

0
xp(x)dx.

The parameter T describes the mean age of mothers at the birth of
their offspring, and is called generation time. We can now use T to
define the entropy rate

H =
S
T

= −


p(x) log p(x)dx

xp(x)dx
. (7)

The entropy rate H is positively correlated with the rate at which
the population returns to its steady state condition after a random
perturbation in the individual birth and death rates (Demetrius
et al., 2004). Hence evolutionary entropy describes the robustness
of the population, that is its ability to maintain a stable trajectory
in the face of random perturbations in the age-specific birth and
death rates.

3.1.2. Demographic variables: macroscopic parameters of population
dynamics

The population growth rate r is implicitly defined in terms
of the function V (x) by the integral equation (6). The statistical
mechanics formalism, described in Demetrius (1983), provides an
algorithm for generating macroscopic variables from the function
V (x) and the population growth rate r .

Let r(δ) denote the growth rate associated with the net-
reproductive function V (x)1+δ . A Taylor expansion of r(δ), see
Demetrius (1997), yields

r(δ) = r(0)+ δr ′(0)+
δ2

2!
r ′′(0)+

δ3

3!
r ′′′(0)+ · · ·

where r ′(0) = φ, r ′′(0) = σ 2, r ′′′(0) = κ . The quantities
φ, σ 2 and κ are called the reproductive potential, the demographic
variance and the correlation index, respectively.

Wehave, Demetrius et al. (2004), derived analytical expressions
for these quantities:
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Small entropy

Large entropy

Age x

Age x

Age x

V (x)

V (x)

V (x)

Fig. 2. Schematic representation of the net-reproductive function V (x) corre-
sponding to (A) small and large entropy, (B) the reproductive potential φ > 0 and
φ < 0, (C) the demographic index γ > 0 and γ < 0.

φ =
1
T


∞

0
p(x) log V (x)dx, (8)

σ 2
= −

1
T


∞

0
p(x)W 2(x)dx, (9)

κ =
1
T


∞

0
p(x)W 3(x)dx −

σ 2

T


∞

0
xp(x)W (x)dx, (10)

where

W (x) = −xφ + log V (x).

The functions φ, σ 2 and κ are the first, second and third moments
of the random variable log V (x) with respect to the probability
distribution p(x).

The directional derivatives

dr
dδ


δ=0

and
dσ 2

dδ


δ=0

(11)

describe changes in the growth rate r and the variance σ 2. These
changes are induced by a perturbation in the net-reproductive
function V (x) to yield a function V (x)1+δ . The quantities r(δ) and
σ 2(δ) are the growth rate and variance parameters associated
with the function V (x)1+δ . The expressions given by (11) can be
explicitly computed. We have

dr
dδ


δ=0

=
1
T


∞

0
p(x) log V (x)dx.

This expression is precisely φ, the reproductive potential. The re-
productive potential can therefore be considered as the sensitivity
of the growth rate parameter r to global perturbations in the net-
reproductive function.

By considering the demographic variance function given by
Eq. (9) we obtain

∂σ 2

∂δ


δ=0

= −
2
T


∞

0
p(x)W 2(x)dx +

1
T


∞

0
p(x)W 3(x)dx

−
σ 2

T


∞

0
xp(x)W (x)dx.

This expression is γ , the demographic index. Hence,

dr
dδ


δ=0

= φ and
dσ 2

dδ


δ=0

= γ . (12)

We can infer from Eq. (12), that for δ small and φ ≠ 0, γ ≠ 0,
the following relations hold:

1r ≈ φδ, 1σ 2
≈ γ δ. (13)

The quantities r,H, φ, γ and σ 2 are all functions of the net-
reproductive function V (x). They constitute macroscopic variables
which describe various demographic and adaptive properties of
the population. The reproductive potential φ and the demographic
index γ have certain geometric properties which we now
delineate.
The reproductive potential φ. It is easy to verify from Eqs. (7) and (8)
that

φ = r − H. (14)

Hence, we have

φ < 0 ⇒ r < H, φ > 0 ⇒ r > H. (15)

Fig. 2(B) gives a net-reproductive functions V (x) that corresponds
to the case φ < 0 and φ > 0.

We observe from (14) that φ < 0 is characteristic of popula-
tions whose growth rate is smaller than entropy. Typically, φ < 0
will describe populations whose organisms have large body size—
large mammals and birds. In such populations growth is slow and
the robustness or stability of population numbers, as measured
by entropy H , is strong. The condition φ > 0 will be descriptive
of populations whose growth rate exceeds the entropy. Typically
φ > 0 will be representative of populations of small body size, for
example insects and small birds. In such populations, growth is al-
ways rapid. However, population numbers will be subject to large
fluctuations.
The demographic index γ . It can be shown using (9) and (10) that

γ = 2σ 2
+ κ. (16)

Hence,

γ < 0 ⇒ σ 2 <
κ

2
, γ > 0 ⇒ σ 2 >

κ

2
. (17)

Since σ 2 measures the dispersion of V (x), we conclude from (17)
that γ < 0 corresponds to a peaked distribution for V (x) and
γ > 0 a flat distribution. These patterns are described in Fig. 2(C).
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Table 1
Examples of demographic parameters for birds and mammals, large and small: Malthusian growth rate r , entropy rate H , reproductive potential φ, demographic index γ ,
demographic variance σ 2 .

Taxon Species Body size (g) r H φ γ σ 2

Large mammal Ovis canadensis 58000 0.037 0.336 −0.230 1.099 0.083
Small mammal Tamias striatus 100 0.963 0.602 0.361 0.202 0.133
Large bird Anser caerulescens 2500 0.154 0.44 −0.287 0.6982 0.058
Small bird Petronia petronia 35 0.7655 0.6523 0.113 0.2365 0.090
The relation given by (16) indicates that the condition γ <
0 imposes strong constraints on the geometry of the net-
reproductive function—namely a highly peaked distribution. Such
a function would be typical of organisms whose reproduction
is concentrated in a few age classes. Such populations will be
described by a low growth rate and a low entropy. The combined
effect of these two features entail a high probability of extinction,
hence such populations will be rare. The condition γ > 0 entails a
net-reproductive function with a broad distribution. This situation
will accommodate populationswhere the growth rate and entropy
may assume a large range of values. These observations indicate
that the condition γ < 0 will be atypical, whereas γ > 0 will be
observed in most natural populations.

Table 1 gives values of r,H, φ, γ and σ 2 for certain species of
mammals and birds. We note that γ > 0 for all species and the
range of values for φ, r and H are consistent with the arguments
described.

4. The invasion dynamics in structured populations

The reciprocal nature of the organism–environment interaction
entails that the dynamics of invasion of a variant type in a resident
population integrates two related factors:

1. The capacity of the organism to appropriate resources from the
external environment.

2. The efficiencywithwhich the organism transforms the acquired
resources into energy which is then used for maintenance and
reproduction.

The analytic depiction of these two factors requires an understand-
ing of the relation between environmental characteristics, such as
resource abundance and resource diversity, and the demographic
and phenotypic properties of the organism.

Empirical studies of the organism–environment dichotomy
using plant populations, Raunkiær (1934), have shown that the re-
ciprocal nature of the interaction entails certain classes of corre-
lations between environmental properties and phenotypic traits.
Levins and Lewontin (1985, Chapter 4) expressed this correlation
as a general principle. These relations can be expressed as follows:

If organisms respond to their environments, then the environment
may be read through the organism and units of environmental
measurements can be translated into units of phenotype.

We will furnish analytic and empirical support for a similar tenet
which relates environmental measures – resource abundance and
resource diversity – with demographic parameters reproductive
potential and the demographic index. This organism–environment
tenet will provide a framework for a model of the dynamics of se-
lection which we will adduce to derive the entropic principle of
selection.

4.1. The organism–environment interaction

The studies of population dynamics as described in Demetrius
(1997) indicate that the steady state dynamics of structured
populations can be characterized in terms of the population
growth rate r and the demographic variance σ 2. Accordingly, if
N(t) denotes the population size when steady state is attained, the
change in N(t)will be given by the stochastic differential equation

dN(t) = rN(t)dt + σ

N(t)dWt

where Wt denotes standard Brownian motion.
Wewill assume that the steady state dynamics of the resources

can also be characterized in terms of a production rate α, and
a variance β . Hence, if R(t) is the resource abundance, then the
resource dynamics at steady state will be described by

dR(t) = aR(t)dt + β

R(t)dWt . (18)

The resource abundance and population size are assumed to be
coupled by an analytic relation of the form

N(t) = f (R(t)) .

Wewill appeal to the reciprocity of the organism–environment
interaction to propose an analogue of the correlation between en-
vironmental measurements and phenotypic properties discussed
earlier.

Our analogue of Raunkiaer’s empirical rule is denoted as:
The organism–environment interaction principle:

If the resource process and the population process are in dynamical
equilibrium, then the changes in resource abundance and diversity
will be positively correlated with the demographic variables,
reproductive potential and demographic index, respectively.

Wewill derive an analytic support for this principle by considering
the effects of changes in resource abundance on the growth rate
and demographic variance of the population.

Let r(δ) and σ 2(δ) denote the change in growth rate and demo-
graphic variance induced by a change 1R in resource abundance.
Assuming that the resource process and the population process are
in dynamic equilibrium, we conclude that, if 1α and 1β denote
the changes in resource production rate and resource heterogene-
ity then we have

1α ≈
dr
dδ


δ=0
, 1β ≈

dσ 2

dδ


δ=0
.

Since dr
dδ


δ=0 = φ and dσ 2

dδ


δ=0

= γ , we conclude that

1α ≈ φ, 1β ≈ γ .

The correlation implies a correspondence between the environ-
mental variables, as characterized by resource abundance and re-
source heterogeneity, and the demographic variables, as defined by
the reproductive potential and the demographic index. Empirical
support for the correspondence between environmental variables
and demographic parameters are discussed in Section 6.2.

The organism–environment interaction principle indicates that
when steady state and dynamical equilibrium conditions prevail,
environmental measures such as variations in resource abundance
and variations in diversity can be inferred from demographic
parameters related to the growth rate and the demographic
variance.
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Fig. 3. Representation of the life cycle graph leading to the Leslie matrix
formulation.

We have in earlier studies, exploited the theory of diffusion
processes to derive measures of selective advantage in studies of
competition between an incumbent and a variant type. In these
studies, the effect of the action of resource constraints on the
dynamics of selection was not made explicit.

In Section 5, we will explicitly introduce the notion of resource
constraints and assume that the resource abundance R(t) satisfies
a stochastic differential equation of the form (18). We furthermore
assume that the resource abundance R(t) and the population size
N(t) are coupled by a general relation of the form N(t) = f (R(t)).

We will distinguish between competition under conditions of
unlimited and limited resources and derive corresponding mea-
sures of selective advantage.

1. Resources unlimited. Resource abundance is said to be unlimited
when the net-reproductive function V (x) remains invariant in
the face of changes 1R in the resource abundance. When this
condition holds, we will show that the outcome of competition
between variant and incumbent is completely determined by
the population size M and the quantities 1r and 1σ 2. The
selective advantage will be given by s = 1r −

1
M1σ

2.
2. Limited Resources. Resource abundance is said to be limited,

when the net-reproductive function V (x) undergoes change as
a result of a change 1R in the resource abundance. When this
condition holds, we will show that the outcome of competition
between variant and incumbent will be determined by the
population size M and the quantity 1S, the change in
entropy rate. The outcome will necessarily be contingent on
changes in resource abundance and diversity. According to
the organism–environment principle, these changes will be
correlated with the demographic variables φ and γ , and the
selective advantage is s = −


φ −

γ

M


1S.

4.2. Models of competition

The study of competition we present will be in terms of the
discrete Leslie model (see Fig. 3). We assume that the incumbent
population X is described in terms of the function Vj and the
variant population X∗ in terms of the function V ∗

j . Let r, σ 2, S
denote the growth rate, demographic variance and entropy of X ,
and r∗, σ 2∗

, S∗ the corresponding macroscopic parameters of X∗.
In the subsequent analysis we will impose no constraints on

the relation between Vj and V ∗

j . Consequently, the quantities
1r,1σ 2,1S will simply describe the changes in macroscopic
parameters induced by the mutation.

Let N(t) and N∗(t) denote the population size of the incumbent
and the variant, respectively. Our study of the invasibility of the
variant X∗ will depend on the analysis of the stochastic dynamics
of the frequency

p(t) =
N∗(t)

N(t)+ N∗(t)
(19)

in continuous time (due to a diffusion approximation).
The invasion process concerns the interaction between the
dynamics of X∗, which is assumed initially rare, and the dynamics
of X , which is assumed to be in the neighborhood of the steady
state. The model assumes that initially the populations X and X∗

evolve independently of each other but when certain sizes are
attained, interaction between the two types will occur on account
of the resource constraints.

Numerical studies discussed in Demetrius et al. (2004) and
Demetrius and Ziehe (2007) suggest that convergence to the steady
state is much faster than the selection process. We will therefore
treat both populations as if they were at steady state. In view of
this condition, an inherently non-linear problem can be studied by
considering the linearized dynamics of the two interacting types.

Our analysis revolves around the evolution of the probability
densities f (N, t) and f ∗(N∗, t) of the population size N(t) and
N∗(t). A fundamental aspect of the argument is a central limit
theorem in dynamical systems, see Demetrius et al. (2004), which
shows that the dynamics of each density function can be described
in terms of the population growth rate r , and the demographic
variance σ 2.

In the case of the resident population of size N(t), the evolution
of the density f (N, t) is given by the solution of the Fokker–Planck
equation

∂ f
∂t

= −r
∂(fN)
∂N

+ σ 2 ∂
2(fN)
∂N2

.

We obtain a similar representation for the variant population of
size N∗(t) and its density f ∗(N∗, t), namely

∂ f ∗

∂t
= −r∗

∂(f ∗N∗)

∂N∗
+ σ 2∗ ∂

2(f ∗N∗)

∂N∗2
.

Equivalently, we could also represent N(t) and N∗(t) as solutions
of the stochastic differential equations

dN = rNdt + σ
√
NdWt , (20a)

dN∗
= r∗N∗dt + σ ∗

√
N∗dW ∗

t , (20b)

where Wt and W ∗
t are standard Brownian motions.

NowwriteM(t) = N(t)+N∗(t). Assume that the competition is
local and unfolds on a time scale whereM(t) is constant. We write
M(t) = M .

To investigate the outcome of competition between the resi-
dent and the variant, we letψ(p, t) denote the probability density
function of the stochastic process which describes the change in
frequency p. The probability density ψ solves the Fokker–Planck
equation

∂ψ

∂t
= −

∂[α(p)ψ]

∂p
+

1
2
∂2[β(p)ψ]

∂p2

where

α(p) = p(1 − p)

1r −

1σ 2

M


,

β(p) =
p(1 − p)

M


σ 2p + σ ∗2(1 − p)


.

Here1x = x∗
−x, where x and x∗ are the demographic parameters

describing the resident and invading type.
The problem of extinction–fixation of the variant type can be

analyzed by considering the Kolmogorov backward equation

∂ψ

∂t
= −α(p)

∂ψ

∂p
+

1
2
β(p)

∂2ψ

∂p2

with the boundary conditions

ψ(0, t) = 1, ψ(1, t) = 0.
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Let P(y) be the probability that the mutant invades the popula-
tion, where y is the initial frequency of themutant.We have shown
that P(y) is given by

P(y) =

1 −


1 −

1σ 2

1σ 2+σ 2 y
 2Ms
1σ2

+1

1 −


1 −

1σ 2

1σ 2+σ 2

 2Ms
1σ2

+1

where

s = 1r −
1
M
1σ 2.

Except in the degenerate case of 2M
1σ 2 = −1, the function P ′(y) can-

not vanish and the concavity of P(y) can be expressed in terms of
s only.

As shown in Demetrius and Gundlach (1999), we have by a
study of P(y),

s > 0 ⇒ P(y) convex, s < 0 ⇒ P(y) concave. (21)

These observations will be adduced to derive two measures of
selective advantage.

4.3. Selective advantage: growth rate and demographic variance

The function P(y) denotes the probability that a mutant with
initial frequency y invades the population. In view of (21), the
degree of curvature of P(y) depends on the magnitude of s, that
is on the value of1r,1σ 2 andM . The dependency on y of P(y) has
been graphically analyzed in Demetrius et al. (2004). These studies
show the following:

(a) 1r > 0,1σ 2 < 0: the mutant invades almost surely.
(b) 1r < 0,1σ 2 > 0: the mutant becomes extinct almost surely.
(c) 1r > 0,1σ 2 > 0:

(i) M > 1σ 2

1r , the mutant invades almost surely;

(ii) M < 1σ 2

1r , the mutant becomes extinct with a probability
which decreases asM increases.

(d) 1r < 0,1σ 2 < 0:
(i) M > 1σ 2

1r , the mutant becomes extinct almost surely;

(ii) M < 1σ 2

1r , the mutant invades with a probability which
decreases asM increases.

These studies entail that the sign of the function

s = 1r −
1
M
1σ 2

determines the outcome of selection.

5. Selective dynamics: unlimited and limited resources

The reciprocal nature of the interaction between organism and
environment entails that the outcome of competition between a
resident and a variant type will depend on the integration of two
processes:

(a) The resource-metabolic process: the relative capacity of the type
to acquire the resources which the environment avails.

This property necessarily depends on the metabolic efficiency of
the organism and its capacity to transform the free energy of
resources intometabolic energywhich can be utilized for offspring
production.

(b) The metabolic-demographic process: the relative capacity of the
type to convert the metabolic energy of the organism into net-
offspring production.
The relative contribution of these two factors to the outcome of
selection will depend on the extent to which the abundance of
resource determines the selective outcome.

If the resource abundance is unlimited, a change1R in resource
abundance will have no effect on the net-reproductive function.
The outcome of competition will be driven completely by the
metabolic-demographic process and differences in the capacity
to acquire resource will not constitute a limiting factor in the
selection process.

However, when resource abundance is limited, a change1Rwill
induce a change in the net-reproductive function and consequently
an alteration in the demographic parameters. The outcome of
competitionwill be determined by the resource-metabolic process
and differences in the effect of these processes on the net-repro-
ductive function.

5.1. Resource abundance unlimited

The outcome of competition is determined by the metabolic-
demographic process. Consequently, the functions 1r and 1σ 2

will be independent of the resource abundance.
The competitive interaction process described in Section 4.3

indicates that the selective advantage is given by the expression

s = 1r −
1
M
1σ 2.

We observe from this expression that when population size
M → ∞, the measure of selective advantage reduces to

s = 1r.

5.2. Resource abundance limited

The outcome of competition is now contingent on the resource-
metabolic process. The parameters 1r and 1σ 2 depend on the
relative effect of resource constraints on the net-reproductive
function of the incumbent and variant.

Assuming that the changes in Vj induced by a mutation and a
change in resource abundance can be described by functions

Ṽj = V 1+δ1
j , Ṽ ∗

j = Ṽ 1+δ2
j ,

where δ1 and δ2 are small, we conclude that the net-reproductive
function of the mutant is given by

Ṽ ∗

j = Ṽ 1+δ
j

where δ = δ1 + δ2.
In view of the perturbation relations, we have (Eq. (13)),

1r ≈ φδ, 1σ 2
≈ γ δ.

We also have

1H = −σ 2δ.

Write

s̃ = −


φ −

γ

M


1S.

Since, Demetrius and Ziehe (2007),

1H ·1S > 0,

we infer

ss̃ > 0.

Hence when resource abundance is limited, the selective advan-
tage is given by
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Table 2
Invasion criteria. (A) Measure of selective advantage according to changes in the
Malthusian parameter r . (B) Measure of selective advantage according to changes
in entropy S, and to ecological constraints measured by the reproduction potential
φ and the demographic index γ .M is population size; a.s. means almost surely.

(A)

Selective constraint Selective outcome

1r > 0 Variant invades
1r < 0 Variant becomes extinct

(B)

Ecological constraint Selective constraint Selective outcome

φ < 0, γ > 0 1S > 0 Invasion occurs a.s.
1S < 0 Extinction occurs a.s.

φ > 0, γ < 0 1S < 0 Invasion occurs a.s.
1S > 0 Extinction occurs a.s.

φ < 0, γ < 0
M > γ/φ 1S > 0 Invasion occurs a.s.
M < γ/φ 1S > 0 Invasion with a probability

increasing with M

φ > 0, γ > 0
M > γ/φ 1S < 0 Invasion occurs a.s.
M < γ/φ 1S < 0 Invasion with a probability

increasing with M

s = −


φ −

γ

M


1S.

The quantities φ and γ are demographic variables, analytic func-
tions of the age-specific fecundity and mortality variables.

We will now assume that the population process and the envi-
ronmental process are in dynamic equilibrium. We can therefore
infer from the organism–environment interaction principle that
the demographic parameters φ and γ will be correlated with the
environmental variables resource abundance and resource diver-
sity. Hence, when resource abundance is limited, the outcome of
selection is a stochastic process which is predicted by the entropy
and contingent on resource abundance and diversity.

Now, when population sizeM → ∞, the selective advantage is
independent of resource diversity and is given by

s = −φ1S.

The relation between the constraints on φ and γ and the
selective outcome is described in Table 2(B).

6. The relation between demographic parameters and ecologi-
cal constraints

The organism–environment interaction principle indicates a
correlation between environmental variables, as expressed by the
resource abundance and resource heterogeneity, and the demo-
graphic parameters, reproductive potential φ and demography in-
dex γ . We will exploit the relation and a specification of φ and γ
in terms of other demographic variables in order to specify more
sharply the relation between resource variation and demographic
parameters.

(a) The relation between the reproductive potential and resource
constraints. The reproductive potential φ is given by φ = r−H .
We observe that φ < 0 entails that the population growth
rate is less than the rate H at which the population returns
to its steady state after a random perturbation. In view of
the assumed correlation between changes in growth rate and
changes in resource abundance, and between changes in the
stability of resources and changes in the stability of population
numbers, we conclude that φ < 0 corresponds to a constant
limited resource. A similar argument applies to the condition
φ > 0. We infer that φ > 0 corresponds to resources that
undergo large variation in abundance.
Table 3
Demographic parameters φ, γ and their correspondence to the resource distribu-
tion.

γ > 0 γ < 0

φ < 0 Limited, stable,
heterogeneous composition

Limited, stable,
homogeneous composition

φ > 0 Abundant, unstable,
heterogeneous composition

Abundant, unstable,
homogeneous composition

(b) The relation between the demographic index and resource
constraints. The demographic index γ is given by γ = 2σ 2

+

κ . We now observe from (17) that γ < 0 entails that the
demographic variance σ 2 is less than the skewness, measured
by κ . As σ 2 measures the dispersion of the net-reproductive
function, if we assume a positive correlation between resource
diversity and demographic variance, we conclude that γ <
0 corresponds to a homogeneous resource distribution. A
similar argument indicates that γ > 0 characterizes a
heterogeneous resource distribution—one defined by a highly
diverse resource.

Table 3 summarizes the relation between the demographic
variables φ and γ and the resource constrains derived from the
above qualitative argument.

6.1. Numerical analysis

The qualitative argument for the characterization of φ and γ in
terms of the resource constraints implicitly assumes certain range
of values for the parameter φ and γ . These values are determined
by the net-reproductive function V (x). We will investigate this
range of values by a numerical study of φ and γ for certain
canonical forms of the net-reproductive function.

We construct a synthetic net-reproductive function V (x)whose
shape is parameterized by flatness, skewness and peak value, this
latter parameter being correlated with maximal fecundity. The
shape parameters are varied, and the corresponding values of the
reproductive potential φ and demographic index γ are computed
(Appendix A). The numerical analysis shows that (Appendix A,
Fig. A.2):

(1) φ decreases as the shape of the net-reproductive function goes
from left-skewed to right-skewed, whatever the flatness (as
schematized in Fig. 2(B)).

(2) φ < 0 corresponds to a flat net-reproductive function, inde-
pendently of the skewness. Moreover, the parameter region
where φ < 0 enlarges when the peak value (maximal fecun-
dity) decreases. The shape of the net-reproductive function re-
flects resources that are constant and limited, as in Table 3.

The pattern for the demographic index γ is more complex
(Appendix A, Fig. A.3). The parameter region where γ is negative is
small, delimited by a narrow range of intermediate flatness values,
with skewness ranging from no skewness to right skewness. Over
the narrow range of flatness γ becomes strongly negative. Over a
narrow range of flatness adjacent to the previous one, γ becomes
strongly positive. Outside these regions, γ is small and positive.
This pattern holds true whatever the peak value. To summarize:

• The condition γ < 0 is rare.
• The condition γ < 0 shows up when the net-reproductive

function is moderately flat and right-skewed (as schematized
in Fig. 2(C)).

• There exists a region where a small change in the shape of the
net-reproductive function can produce an abrupt change in γ .

This latter point will not be discussed in this study.
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Table 4
Demographic variables for Daphnia pulex at increasing densities (number of
individuals per cc): Malthusian growth rate r , generation time T (days), entropy
H , reproductive potential φ, demographic index γ .
Source: Data from Frank et al. (1957).

Population density r T H φ γ

1 0.2936 10.74 0.2244 0.069 0.064
2 0.2774 11.13 0.2253 0.052 0.23
4 0.2683 11.23 0.2281 0.040 0.37
8 0.1924 14.21 0.1927 −0.0003 0.25

16 0.094 17.14 0.1712 −0.077 0.29
32 −0.114 20.4 0.1486 −0.262 1.66

6.2. Empirical data

We will now appeal to empirical data from life-history studies
of three species, Daphnia, Rotifers and Drosophila, to furnish
support for the characteristics given in Table 3.
Daphnia. Daphnia are common freshwater micro-crustaceans that
are often dominant herbivores in the lakes and ponds they inhabit.
The organisms have considerable ecological importance and in
view of the facility with which they can be cultured in the
laboratory, they have become a popular species in studies of life-
history evolution.

A significant feature of the organism for ecological and life-
history studies derives from the fact that the organism undergo
cyclical parthenogenetic reproduction. This entails that the effect
of environmental and resource constraints on life-history variation
can be investigated independent of genetic variation.

The life-history data we analyze is a summary of investigation
carried out by Frank et al. (1957). The objective was to study the
effect of density on the fecundity and survivorship parameters.
Frank et al. (1957) constructed cohort life-tableswith a single clone
that has been maintained as a lineage for several years.

Daphnia pulexmatures when it is about ten days old, producing
clutches of various offspring number (1–100 eggs) every day
over its 20–80 days life span. The experimental study was based
on cohorts from individuals that were less than one day old.
Each cohort was placed in 25 ml of synthetic pond water. The
experimental set up had seven treatment densities of 1, 2, 4, 8, 16,
24, 32 individuals per cc, and produced population sizes ranging
from 25 to 800 individuals. The life-table for each density was
constructed.We have used these life-tables to compute the various
demographic parameters (Table 4, Fig. 4).

The population density represents a good measure of the re-
source variation in abundance. The graphs in Fig. 4 indicate that
φ decreases with density. At low density, φ > 0, at high density,
φ < 0. The empirical data support the relation between resource
abundance and φ. The graph also shows that γ is always positive
and shows a sharp increase at higher densities. It is not possible to
make any direct inference regarding γ and resource heterogene-
ity in this case, unless we assume that resource heterogeneity in-
creases with density in these populations.
Rotifers. The study of Ricci (1983) describes the life-history traits
of nine species of Bdelloids rotifers collected in two contrasting
environments: bottom samples fromwater courses andmoss sam-
ples from trees and walls. The terrestrial environment can be
considered stable, and the aquatic environment unstable. Indeed,
despite its potential instability, the terrestrial environment pro-
vides stable resources in favorable conditions, and rotifers have
developed elaborate strategies to cope with unfavorable condi-
tions (anhydrobiosis). By contrast, in the aquatic environment, ro-
tifers are subject to strong predation pressures and resources may
fluctuate by the interplay of numerous species at various levels of
large trophic networks. This point of view is consistent with the
values of the growth rate r and the generation time T , which are
Fig. 4. Demographic parameters for Daphnia populations at increasing population
densities: growth rate r , generation time T , reproductive potential φ, and
demographic index γ . The growth rate r decreases with population density while
the generation time T increases. The reproductive potential φ is positive at low
density, and negative at high density.
Source: Data from Frank et al. (1957).

Table 5
Demographic variables for Bdelloid rotifer species in two contrasting environ-
ments: Aq = Aquatic, Tr = Terrestrial. Malthusian growth rate r , generation time T
(days), entropy rate H , reproductive potential φ, demographic index γ .
Source: Data from Ricci (1983).

Env. r T H φ γ

Habrotrocha constricta Aq 0.3386 7.93 0.2737 0.0648 0.098
Macrotrachela inermis Aq 0.3291 8.13 0.2680 0.0609 0.255
Embata laticeps Aq 0.3118 7.49 0.3034 0.0148 0.303
Philodina roseola Aq 0.4264 6.80 0.3024 0.1239 0.346
Habrotrocha elusa vegetata Tr 0.2728 8.26 0.2898 −0.0170 0.496
Habrotrocha sylvestris Tr 0.2749 9.10 0.2696 0.0053 0.291
Otostephanos torquatus Tr 0.1060 16.25 0.1946 −0.0884 0.969
Adineta vaga Tr 0.3713 6.26 0.2971 0.0742 0.469

respectively larger and smaller in the aquatic environment than in
the terrestrial environment (Table 5, Fig. 5(A)): according to classi-
cal life-history theory, the aquatic environment can be associated
with r-strategist populations and the terrestrial environment with
K -strategist populations.

The values of φ and γ for the nine rotifer species are displayed
in Fig. 5(B)–(C) according to the environment, aquatic (considered
unstable and opportunistic) or terrestrial (considered stable and
competitive). When going from the aquatic environment to the
terrestrial one, the trend of φ is from positive to negative, and the
trendofγ is to increase fromsmall positive values to larger positive
ones. The values of γ are much more dispersed in the terrestrial
environment. This could reflect a broader spectrum of ecological
niches in this latter environment (Fig. 5(C)). The trends of φ and
γ are in agreement with Table 3: the terrestrial environment
is characterized by more abundant and more heterogeneous
resources.
Drosophila. The study of Thomas-Orillard and Legendre (1996)
compares the life-histories of Drosophila melanogaster strains
subjected to two constraints: infection by the C-virus, and resource
abundance (Appendix B). The Drosophila C virus (DCV) is a
non hereditary virus horizontally transmitted to the larvae by
consumption of contaminated food. TheDCVhas pleïotropic effects
on its host: it reduces larval survival rates and developmental time
but, curiously, enhances the fecundity rates of the contaminated
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Fig. 5. Demographic parameters for nine species of Bdelloid rotifers in two
contrasting environments, aquatic and terrestrial. Regression lines show the trend.
(A) Growth rate r and generation time T ; (B) Reproductive potential φ; (C)
Demographic index γ .
Source: Data from Ricci (1983).

imagos. The net effect is a larger growth rate of the DCV-infected
populations.

To better assess the impact of the virus on its host, DCV-
infected and DCV-free strains of Drosophila were reared in normal
or competitive food conditions, and the demographic parameters
determined in each case. Thomas-Orillard and Legendre (1996)
Table 6
Demographic variables for Drosophila melanogaster, DCV-free and DCV-infected
populations in normal and competitive food conditions: Malthusian growth rate
r , generation time T (days), entropy rate H , reproductive potential φ, demographic
index γ .
Source: Data from Thomas-Orillard and Legendre (1996).

Environment r T H φ γ

DCV-free Normal 0.3442 12.34 0.1092 0.254 0.111
Competitive 0.3409 12.23 0.1106 0.230 0.040

DCV-infected Normal 0.4057 11.06 0.1237 0.282 −0.018
Competitive 0.3506 11.26 0.1274 0.223 −0.004

found that the growth rate of DCV-infected animalswas still higher
in competitive food conditions, though to a lesser extent. However,
using a demographic model incorporating competition between
the DCV-free and DCV-infected populations, they showed that:
(1) if no contamination occurs, the DCV-infected population goes
extinct despite its larger growth rate in a density-independent
context; (2) if the contamination rate is low, the two populations
coexist. It was pointed out that the growth rate is not an absolute
measure of fitness, as it does not take the ecological setup into
account.

Fig. 6 shows that φ > 0 for both the DCV-free and the DCV-
infected strains, and that φ decreases for both strains when going
from abundant resource condition to limited resource condition, in
accordance with Table 3. For the free individuals, the demographic
index γ is positive and decreases when going from the normal
environment to the competitive one. For the infected individuals,
γ is negative and does not vary significantly across the two
environments (Table 6). The negative value of γ accounts for the
reduced fitness of the infected individuals, as predicted by the
measure of selective advantage in Table 2(B), and in agreement
with the result of Thomas-Orillard and Legendre (1996).

Discussion

Competition between related types for the appropriation of re-
sources and the investment of these resources into the production
of offspring constitutes the driving force of evolutionary change by
selection.

The classical models of this competition process assert that
the outcome of selection is a deterministic process predicted by
the Malthusian parameter, the population growth rate r . Selective
advantage is given by

s = 1r.

Here1r denotes the difference in growth rate betweenmutant and
incumbent types.

This relation implicitly assumes that population size is infinite
and explicitly neglects variations in resource abundance and diver-
sity. When population size is finite, and we consider the variations
in abundance and diversity of resourceswhich the populations uti-
lize, then the measure is

s = −


φ −

γ

M


1S. (22)

The demographic parameters φ and γ characterize resource
abundance and diversity respectively and M denotes population
size.

The concept evolutionary entropy describes the diversity in
the pathways of energy flow within the population. This is a
generic notion which is pertinent to various levels of biological
organization: molecular, demographic and ecological (Demetrius
et al., 2004). Accordingly the entropic selection principle is
applicable to the study of competition between populations at
various hierarchical levels: cells, organisms and species.
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Fig. 6. Demographic parameters for DCV-free and DCV-infected strains of Drosophila melanogaster reared in normal and competitive food condition: (A) reproductive
potential φ; (B) demographic index γ .
Source: Data from Thomas-Orillard and Legendre (1996).
Evolutionary entropy also describes the robustness or stability
of the population. Consequently Eq. (22) can be invoked to
provide an evolutionary rationale for the large variation in stability
observed in biological systems subject to different classes of
environmental constraints throughout their evolutionary history.

Variability in the age or size or metabolic energy at which
individuals replicate is a fundamental property of all metabolic
systems. This variability is observed at the molecular level—as in
metabolic networks, at the cellular level—as in the heterogeneity
of the cell cycle, and at the population level—as in the iteroparity
of life history.

The statistical parameter evolutionary entropy is an analytical
description of this heterogeneity. The entropy S is analytically
related to generation time T . We have

S = log T + b.

This property has been exploited to establish certain analytical
relations between entropy and various morphometric and phys-
iological parameters, such as body size, life-span and metabolic
rate.
The entropic selection principle established in this article
furnishes a new framework for understanding the evolutionary
basis for the large variation in body size, life span and metabolic
rate observed in natural populations (Demetrius et al., 2009).

Conclusion

The two fundamental processes that form the core of Darwin’s
theory of evolution are cooperation between parental alleles in
an organism and competition between genetically related types
in a population. Mendel’s laws of particulate inheritance, which
formalize the allelic dynamics of cooperation, and the entropic
principle of selection which describes the ecological dynamics
of competition, are complementary canons of the Darwinian
thesis.

Mendel’s laws of heredity postulate that inheritance is particu-
late, in opposition to the continuous variation observed for many
traits. Mendelism, in spite of the empirical support documented by
de Vries, Correns and von Tschermak, was considered highly con-
troversial, as it violated the intuitively plausible notion of blending
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parental heritabilities.Mendel’s theoreticalmodel only became ac-
cepted when Fisher showed that if many genes were involved in
the expression of a trait, they could produce the continuous pheno-
typic variation observed. Fisher’s observation can bemore formally
expressed by the assertion:

The theory of blending inheritance is the limit, as the number of
genes involved in the expression of a trait tends to infinity, of the
theory of particulate inheritance.

The entropic principle of natural selection asserts that competition
between related types is regulated by the stability of population
numbers, a property which can be described by evolutionary
entropy. Entropic selection is highly consistent with a large range
of empirical observations. In particular, the principle is consistent
with the well known fact that cancer cells with lower growth
rates often outcompete normal cells in microenvironments where
the resource is subject to large variations in abundance. The
controversial nature of the entropic selection principle resides in
the fact that it appears to violate the intuitively plausible notion of
Malthusian selection—amode of selection which seems consistent
with laboratory observations.

This article has furnished an explanation for these laboratory
observations and has shown that the Malthusian principle and the
entropic principle can be reconciled. The rapprochement resides
on the following analytical fact:

The Malthusian selection principle is the limit, as population size
and resource abundance tend to infinity, of the entropic selection
principle.

Consequently, Malthusian selection as proposed by Fisher, is an
approximation to the entropic selection principle. The validity of
this approximation clearly increases as the population size and
resource abundance increase.

The body of work which we call directionality theory is essen-
tially a synthesis of the Mendelian laws of particulate inheritance
with the entropic principle of selection. The main thrust of direc-
tionality theory is to elucidate how the allelic dynamics of coop-
eration, as formalized by Mendel’s law, are integrated with the
ecological dynamics of competition, as described by the entropic
selection principle, to predict long-term changes in the genotypic
and phenotypic states of a population. The main achievement of
this paper in realizing this program is the analytical depiction of
the two critical ecological determinants of selection: the resource
abundance and its diversity.
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Appendix A. The incidence of the shape of the net-reproductive
function on the reproductive potential φ and the demographic
index γ

We construct a synthetic net-reproductive function V (x)whose
shape is parameterized by flatness, skewness, and peak value. The
shape parameters are varied and the corresponding values ofφ and
γ are computed. The Gaussian function with mean a and standard
deviation s,

gs(x) = exp


−
1
2
(x − a)2

s2


,

Fig. A.1. The shape of the parameterized net-reproductive function Vb,s,f (x).
Parameter values: s = 15 (standard deviation = flatness), f = 10 (peak value),
b = 10, 50, 90 (left skewness, no skewness, right skewness).

is made skewed using an homothetic transform of parameter b,
where the parameter b runs through the age classes, in number d:

hb,s(x) =


gs

a
b
x

, 1 ≤ x ≤ b

gs


(d − a)

x − b
d − b

+ a

, b < x < d.

The function hb,s peaks at x = b. It is symmetric for b = a (zero
skewness), has left skewness for b < a, and right skewness for
b > a. The number d of age classes is fixed, d = 100, and we take
a = d/2 = 50.

The function hb,s has peak value 1. The net-reproductive func-
tion is now defined as Vb,s,f (x) = fhb,s(x) with peak value f . The
parameter f is correlated with maximal fecundity. Thus the syn-
thetic net-reproductive functionVb,s,f is parameterized by b (skew-
ness), s (flatness), and f (peak value) (Fig. A.1). We compute the
values of φ and γ associated with Vb,s,f , and observe how these
quantities change when the parameters b, s, f are varied within
biologically realistic bounds. For readability of the figures, b and
s are varied continuously, and only two typical values of f (f = 10,
f = 2) are given.

Appendix B. Life tables for Drosophila

i Normal
food-condition

Competitive
food-condition

DCV-free DCV-
infected

DCV-free DCV-
infected

li mi li mi li mi li mi

1 1.000 0 1.000 0 1.000 0 1.000 0
2 0.990 0 0.990 0 0.990 0 0.990 0
3 0.961 0 0.923 0 0.873 0 0.923 0
4 0.933 0 0.860 0 0.771 0 0.860 0
5 0.906 0 0.802 0 0.680 0 0.802 0
6 0.880 0 0.747 0 0.600 0 0.748 0
7 0.878 0 0.722 0 0.598 0 0.722 0
8 0.876 0 0.697 0 0.597 0 0.697 0
9 0.873 0 0.673 0.9 0.595 0 0.673 0.9

10 0.871 0 0.673 29.6 0.594 0 0.673 16.2
11 0.871 15.00 0.673 40.0 0.594 22.3 0.673 23.3
12 0.871 31.00 0.673 43.2 0.594 29.9 0.673 32.8
13 0.871 35.00 0.673 30.5 0.594 33.7 0.673 25.4
14 0.871 28.70 0.594 30.6
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Fig. A.2. Values of the reproductive potential φ when the shape of the net-reproductive function is varied, parameterized by left skewness to right skewness (no skewness
at b = 50), and by increasing flatness. Perspective and contour plot. The contour plot shows the zero-contour line. (A) Peak value f = 10. (B) Peak value f = 2.
Fig. A.3. Values of the demographic index γ when the shape of the net-reproductive function is varied, parameterized by left skewness to right skewness (no skewness at
b = 50), and by increasing flatness. Perspective and contour plot. The contour plot shows the zero-contour line. (A) Peak value f = 10. (B) Peak value f = 2.
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