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Virology principles

Cell=cytoplasm+nucleus

Virus enters external membrane...

and has to reach a small nuclear pore...

to enter the nucleus and replicates.
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Viral Dynamics in the Cytoplasm

Virus can either diffuse

or be actively transported along microtubules

to ultimately reach a nuclear pore
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Monitoring in vivo of viral trajectories

Figure: G. Seisengerger et al., Science 294, 1929 (2001).
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Scheme
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Modeling Motivations

Degradation activity occurs in cell cytoplasm

We want to derive the Mean Time τN and the Probability PN

a virus hits a nuclear pore

Application to efficient vectors design in gene therapy
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Cell representation

Two-dimensional radial cell with N uniformly distributed
microtubules:
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Intermittent Dynamics of the Virus

Viral Dynamics Equations

ẋ =
√

2Dẇ Free Virus,

ẋ = V Bound Virus.
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Homogenized Description

Homogenized Description

ẋ = b(x) +
√

2Dẇ
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Homogenization Interest

Application of the small hole theory: computation of PN and τN
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Small hole theory

How long it takes for a
brownian particle confined to a
domain Ω to escape through a
small opening ∂Ωa

(ε = |∂Ωa|
|∂Ω| << 1)?

Mean escape time

τ =
|Ω|
πD

ln

(
1

ε

)
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Assumptions

We model the degradation activity with a steady state killing
field k(x).

We assume the drift b derived from a potential Φ: b = −∇Φ.

The n nuclear pores occupy a small fraction of the nuclear
membrane
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Results

Theoretical Results

PN =
1
|∂Ω|

R
∂Ω e−

Φ(x)
D dSx

ln( 1
ε)

nDπ

R
Ω e−

Φ(x)
D k(x)dx+ 1

|∂Ω|
R
∂Ω e−

Φ(x)
D dSx

,

τN =
ln( 1

ε)
nDπ

R
Ω e−

Φ(x)
D dx

ln( 1
ε)

nDπ

R
Ω e−

Φ(x)
D k(x)dx+ 1

|∂Ω|
R
∂Ω e−

Φ(x)
D dSx

,
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Principle

MFPTs from x0 to xf are equal in both intermittent and
homogenized trajectories

In the small diffusion limit

||xf − x0||
b(x0)

= τ(x0) + tm
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Two-dimensional radial case

In the small diffusion limit

r0 − rf
b(r0)

=
r0 − (r̄(r0)− dm)

b(r0)
= τ(r0) + tm
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MFPT to a microtubule

virus!" r

!" a

Reflecting boundary

Absorbing boundary

R

!" a

#
binding site

brownian motion

Dynkin’s system

D∆u(r , θ) = −1 in Ω

u(r , 0) = u(r ,Θ) = 0,

∂u

∂r
(R, θ) = 0.

For Θ << 1

τ(r0) =
1

Θ

∫ Θ

0
u(r0, θ)dθ ≈ r2

0

Θ2

12D
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Mean binding radius (1)

We solve the heat equation in the pie wedge domain Ω:

Heat equation

D∆p(r , θ, t) =
∂p

∂t
(r , θ, t) in Ω

p(r , 0, t) = p(r ,Θ), t = 0,

∂p

∂r
(R, θ, t) = 0.

Indeed, r̄(r0) = 1
Θ

∫ Θ
0

∫ R
0 rε(r |r0, θ0)dθ0 with

ε(r |r0, θ0) =
∫∞

0 j(r , t|r0, θ0)dt = −D
∫∞

0
∂p
∂n (r , t|r0, θ0)dt.
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Mean binding radius (2)

0.040

0.005

0.010

0.015

0.020

0.025

0.030

0

0.035

1009080706050403020100

Exit radius distribution

Radius

For Θ << 1

r̄(r0) ≈ r0(1 +
Θ2

12
)

Thibault Lagache Viral Infection Analysis



Results (1)

Effective drift amplitude

b(r0) =
r0 − (r̄(r0)− dm)

τ(r0) + tm
=

dm − r0
Θ2

12

tm + r2
0

Θ2

12D

.

Φ(r) = dm
√

12Dtm
tmΘ arctan

(
Θr√

12Dtm

)
− D

2 ln
(
12Dtm + r2Θ2

)

Steady state distributions for
both intermittent brownian
simulations (solid line) and
theoretical homogenized
trajectories (dashed line)
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Results (2)

Probability and mean time to a nuclear pore

PN ≈ dm

dm + K

(
1− Kδ (dmδ + Dtm)

12Dtmdm (dm + K )
Θ2

)
τN ≈ K

k (dm + K )

(
1 +

δ (dmδ + Dtm)

12Dtm (dm + K )
Θ2

)
.

where K = 2k0δtm ln
(

1
ε

)
and α =

(
1 + R+δ

dm

)
1

24 .
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Conclusion

An homogenized description for PN and τN derivation.

Generalization a three-dimensional (spherical) level ?

Other steps of viral infection..
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Drift computation in a neuron

Cylindrical geometry

In the small diffusion limit

b =
dm

tm + τ

with τ = 1
λ1

=
|Ω|ln( 1

ε)
2πN
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