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Résumé

L’entrée du virus dans une cellule est un mécanisme complexe qui commence par
I’attachement du virus & des récepteurs spécifiques a la surface de la cellule pour
finir quand le virus délivre son ADN dans le noyau au travers d’un pore nucléaire.
En particulier, la plupart des virus sont endocytés dans des endosomes pour étre
plus tard relachés dans le cytoplasme. Leur mouvement alterne alors entre diffusion
libre et transport actif le long des microtubules jusqu’a atteindre un pore nucléaire.
L’étape endosomale et le déplacement libre dans le cytoplasme limitent particulie-
rement le transfert de génes dans le noyau des cellules en thérapie génique et la
capacité des virus a délivrer leur ADN avec succés indique que ceux-ci ont déve-
loppé au cours de I’évolution des outils moléculaires efficaces pour franchir ces deux
étapes précoces de l'infection. Pour mieux comprendre les mécanismes sous-jacents
a lefficacité virale, nous construisons des modéles stochastiques a 1’échelle molécu-
laire pour estimer le temps moyen d’échappée de I’endosome et la probabilité qu’'un
virus relaché dans le cytoplasme atteigne un pore nucléaire avant d’étre dégradé,
en fonction de la géométrie cellulaire et des paramétres structuraux et dynamiques
du virus. L’échappée endosomale est provoquée par le changement de conformation
pH-dépendant de protéines actives a la surface du virus et nous développons donc,
dans un premier temps, un modéle Markovien a sauts afin d’étudier la cinétique
de ce changement de conformation a pH donné. Notre modéle théorique permet
d’interpoler les cinétiques mesurées expérimentalement pour ’'hémagglutinine de la
grippe a différents pH. Dans un second temps, modélisant 1’entrée des protons dans
le cytoplasme par un processus de Poisson, nous calculons la moyenne et la variance
du temps de ’échappée endosomale. En particulier, nous calculons que le temps
moyen de 1’échappée du virus adéno-associé, un virus trés utilisé en thérapie gé-
nique, est de 20 minutes, indiquant que le virus s’échappe depuis I’endosome tardif.
Afin d’obtenir des résultats asymptotiques généraux concernant le mouvement libre
du virus dans le cytoplasme, nous modélisons la dynamique intermittente du virus
par une équation continue de Langevin pour la vitesse contenant & la fois un terme
de diffusion et un terme de dérive prenant en compte les périodes de transport actif
le long des microtubules, et nous présentons une procédure générale pour calibrer
ce terme de dérive en fonction de I'organisation du réseau de microtubules, de la
constante de diffusion du virus dans le cytoplasme et de la constante d’affinité entre
le virus et les microtubules. Gréace a cette description continue de la vitesse du vi-
rus, calculer la probabilité et le temps moyen de premier passage du virus a un petit
pore nucléaire devient un probleme d’"échappée belle". En particulier, du fait que
les noyaux des cellules sont recouverts d’'un grand nombre de pores nucléaires, nous
étendons certains résultats asymptotiques de la théorie de 1’"échappée belle" afin
de mesurer I'impact de I'intéraction entre les différents pores sur la probabilité et le
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temps moyen de premier passage du virus a un pore. Utilisant des données expéri-
mentales, nous calculons en particulier que le temps moyen de premier passage du
virus adéno-associé a est d’environ 3 minutes, ce qui est en accord avec les observa-
tions un vivo, et que la probabilité que celui-ci atteigne le pore nucléaire avant d’étre
dégradé est d’environ 95%, confirmant Defficacité du virus a délivrer son ADN au
noyau.



Abstract

At the cellular level, viral entry is a complex multi-step process that starts from
the binding of the virus to specific cellular receptors and ends when the virus de-
livers its genetic material in the nucleus through a nuclear pore. Most viruses are
internalized in endosomes to be later released in the cytoplasm where they alternate
between diffusion and ballistic periods along the microtubules network until they
reach a nuclear pore. The endosomal step and the free trafficking in the cytoplasm
to a nuclear pore particularly limit the genes delivery in gene therapy, and the high
infection probability of viruses suggest that they have developed efficient tools in
these two steps. Yet the principles underlying these tools are still largely unknown
and to unravel viral mechanisms underlying their infection success, we construct
stochastic models at a molecular level to estimate the mean escape time from the
endosome and the probability that a virus released in the cytoplasm reaches a nu-
clear pore before being degraded, as a function of the geometry of the cell and some
dynamical parameters of the virus. The endosomal escape of viruses is triggered by
the pH-dependent conformational change of viral active proteins and, in a first time,
we develop a Markov jump model to study the kinetics of the conformational change
at a given pH. Our theoretical model interpolates nicely the reported kinetics of the
influenza hemagglutinin at several pH. Then, modeling the protons entry in the en-
dosome with a Poissonian process, we compute the mean and the variance of the
viral escape time. Interestingly, we found that the mean escape time of the adeno-
associated virus, an extensively used virus in gene therapy, is around 20 minutes,
suggesting that the virus should escape from the late endosome. To obtain general
asymptotic results for the free cytoplasmic step, we first coarse grain the complex
intermittent dynamics of the virus into a continuous Langevin equation for the vi-
ral velocity that contains both a diffusion term and a drift term that accounts for
the active transport along the microtubules, and we provide a general calibration
procedure to compute the drift amplitude as a function of the microtubules net-
work organization, the diffusion constant of the virus and its unbinding rate from a
microtubule. Using that continuous Langevin description, reaching a small nuclear
pore reduces to a narrow escape problem and in particular, because biological cells
contain many holes, we extend some previous asymptotic results to quantify the
impact of the interactions between the absorbing windows on the probability and
the conditional mean first passage time of a virus to a pore. Using biological data,
we found that the mean first passage time of an adeno-associated virus to a nuclear
pore is approximately equal to 3 minutes, which is coherent with the experimen-
tal observations, and that the probability the virus reaches a pore alive is equal to
95%, which confirms the efficiency of the viral particle to deliver its DNA through
a nuclear pore.
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Introduction (francais)

Les virus utilisent les cellules pour se répliquer et se propager. Etant facilement
produits en large quantité, les virus sont de formidables outils pour explorer les
méchanismes cellulaires comme ’endocytose ou pour transporter ’ADN en thérapie
génique. Méme si les différentes étapes du cycle virale sont assez bien comprises,
beaucoup de questions importantes restent en suspens. En particulier, I'impact de
I’environnement complexe de la cellule sur les voies d’infection est encore mal com-
pris. Pour de nombreux virus, des modeéles moléculaires in vitro existent pour décrire
les changements structurels du virus lors des différentes étapes de son cycle de ré-
plication et des nouvelles techniques d’imagerie sont développées pour confirmer ou
infirmer ces modéles dans I'environnement plus complexe de la cellule. De maniére
trés surprenante, une grande hétérogénéité du comportement viral est observée, ré-
vélant des intéractions complexes entre la cellule et la structure moléculaire de son
hote. En effet, a chaque étape de l'infection, le virus subit des changements struc-
turels sous l'influence de l'environnement cellulaire et une part stochastique dans
ces métamorphoses conduit & des voies d’infection trés différentes, avec des réussites
inégales.

L’infection virale est un mécanisme complexe qui commence quand le virus s’at-
tache a la cellule pour finir une fois que celui-ci a délivré son matériel dans le noyau
via un petit pore nucléaire. Aprés s’étre lié a un récepteur spécifique, la plupart
des virus & ADN sont endocytés dans des endosomes pour étre plus tard relachés
dans le cytolasme. Une fois libres, ils alternent alors entre diffusion libre et transport
actif le long des microtubules (MTs) jusqu’a atteindre un pore nucléaire et délivrer
leur ADN. Dans I’endosome, les virus peuvent étre dégradés par des protéases alors
qu’ils peuvent étre digérés par des protéasomes ou piégés dans le cytoplasme encom-
bré d’organelles. Pour ces étapes limitant le taux d’infection, nous construisons des
modeles biophysiques a 1’échelle moléculaire afin de calculer différents paramétres
comme le temps de sortie moyen de ’endosome ou encore la probabilité et le pre-
mier temps de passage conditionnel pour qu’un virus atteigne un pore nucléaire avant
d’étre dégradé ou piégé dans le cytoplasme. Pour I'étape endosomale, nous considé-
rons que le virus s’échappe quand un nombre suffisant de ligands se lie & une de ses
protéines actives et nous utilisons donc dans le cinquiéme chapitre des chaines de
Markov a sauts et des solutions asymptotiques pour les équations de Kramers-Moyal
afin d’obtenir la cinétique de sortie du virus. Pour obtenir des résultats asympto-
tiques généraux concernant 1’étape cytoplasmique, nous réduisons, dans un premier
temps, la dynamique intermittente complexe du virus en une équation de Lange-
vin pour la vitesse contenant & la fois un terme de diffusion et un terme de dérive
comptant pour les périodes ballistiques le long des MTs. Les deux premiers chapitres
présentent la procédure de calibration du terme de dérive & partir de la géométrie
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INTRODUCTION (FRANGALIS)

de la cellule (organisation du réseau de MTs ...) et de paramétres dynamiques du
virus (coefficient de diffusion ... ). Les pores nucléaires occupant une faible fraction
de ’enveloppe du noyau, le calcul de la probabilité et du temps de passage condi-
tionnel du virus a un pore nucléaire devient alors un probléme d’"échappée belle".
Le troisieme chapitre est consacré a l'étude de l'impact de l'intéraction entre les
nombreux pores nucléaires sur la probabilité et le temps de passage conditionnel,
alors que le quatriéme chapitre présente quelques nouveaux résultats comme le pre-
mier temps de passage du premier virus quand plusieurs virus indépendants infectent
une méme cellule. Pendant les étapes précoces de I'infection, les virus communiquent
en permanence avec ’environnement cellulaire et subissent différents changements
structurels. Ces intéractions impactent le comportement du virus et un bruit sto-
chastique au cours des différentes métamorphoses affecte de maniére conséquente la
voie infectieuse empruntée et donc le succés du virus a se répliquer et a se propager.
Pour tenir compte de cette variabilité, nous avons développé des modéles biophy-
siques pour chacune des étapes précoces de l'infection et ensembles, ces modéles
fournissent un cadre mathématique pour modéliser 'infection dans sa globalité.

1 Le cycle de réplication des virus a ADN

La plupart des virus & ADN diffusent dans la matrice extracellulaire avant de se
lier & des récepteurs spécifiques a la surface des cellules (voir figure 1). Les récep-
teurs sont spécifiques a l'espéce virale et méme parfois au sérotype (voir la revue
de Engelhardt concernant les virus adéno-associés (AAV) [1]). La plupart d’entre
eux sont ensuite internalisés dans le cytoplasme de la cellule via une endocytose cla-
thrine dépendante. Ils entrent alors dans le cytoplasme dans des endosomes, qui sont
des vésicules de routage vers les différents compartiments cellulaires. La famille des
protéines Rab joue un role essentielle dans ce triage [1]. L'une des voies les plus em-
pruntées par les virus semble étre la voie Rab5-Rab7 (voir |2] pour plus de détails) :
les virus entrent dans des endosomes précoces qui maturent progressivement pour
devenir des endosomes tardifs et finalement fusionner avec les lysosomes, organites
assurant la digestion intra-cellulaire. Tout au long de leur maturation, les vésicules
endosomales s’acidifient grace & des pompes a protons ATPases situées sur leur
membrane. Les virus doivent alors s’échapper de 'endosome avant d’étre dégradés
par des protéases pH dépendantes. Bien que le processus de sortie des endosomes
est fondamental, il est encore assez mal compris mais il semblerait que la baisse
de pH provoque le changement conformationnel des protéines de penétration de la
capside des virus nus ou des glycoprotéines de la membrane des virus enveloppés
initiant la sortie du virus de ’endosome. Une fois sortis de I’endosome, les virus se
déplacent alors librement jusqu’a atteindre un pore nucléaire et importer leur ADN.
Les vecteurs viraux et synthétiques ont tous deux a se déplacer jusqu'a trouver un
pore nucléaire, ce qui est une des étapes limitantes du transfert de génes. En effet,
les déplacements dans le cytoplasme de gros vecteurs sont trés fortement limités par
des barriéres tant physiques qu’électrostatiques [3, 4]. Alors que les molécules de
taille inférieure a 500 kDa peuvent encore se déplacer par diffusion libre, les parti-
cules plus grosses comme certains virus ou vecteurs synthétiques de génes ont besoin
d’étre transportés activement par des moteurs moléculaires le long des microtubules
(MTs) [5] (voir figure 1). Les virus sont bien plus efficaces que les vecteurs synthé-

4 1. Le cycle de réplication des virus & ADN
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FIGURE 1 — (1) Une particule virale se lie & un récepteur spécifique et est internalisée
dans un endosome. (2) Le virus, enfermé dans 'endosome, traverse le réseau d’actine
périphérique. (3) Virus et endosome sont activement transportés le long des MTs. (4)
Le virus s’échappe de 'endosome. (5) Le virus alterne entre diffusion libre et déplacement
actif le long du réseau de MTs. (6) Le virus atteint finalement un pore nucléaire et importe

son patrimoine génétique.

tiques a base de polymeéres ou de lipides : alors qu'un grand nombre (=~ 100 000) de
vecteurs synthétiques doit entrer dans le cytoplasme pour que le géne soit exprimé,
quelques virus semblent suffire a infecter une cellule. La compréhension et la quanti-
fication des différentes étapes de I’entrée virale sont donc essentielles & la conception
et a 'optimisation futures des vecteurs de génes qu’ils soient synthétiques ou viraux.

2 Modéliser les étapes précoces de 'infection virale

Les premiers modéles utilisés pour quantifier le succés du transfert de génes
au niveau cellulaire [6, 7, 8] sont basés sur la loi de conservation entre différents
états du virus : le virus peut passer d'un état (enfermé dans I’endosome, diffusant
librement dans le cytoplasme ...) a un autre au cours du temps avec une certaine
cinétique. Il peut de plus étre dégradé. Le probléme de ces approches est que les
cinétiques de passage entre différents états ne sont pas dérivées a partir de lois
biophysiques mais ajustées en fonction des valeurs expérimentales. On ne peut donc
pas directement regarder 'impact des différents paramétres dynamiques (constante
de diffusion du virus ...) ou géométriques (densité du réseau de MTs ...) sur le
succés de l'infection. De plus, elles ne peuvent étre utilisés pour analyser le bruit

2. Modéliser les étapes précoces de l'infection virale 5)
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stochastique intrinséque a chacune des étapes précoces de l'entrée du virus et ne
saisissent donc pas l'individualité structurelle des virus au cours du temps. Pour
quantifier clairement I'impact des différents paramétres dynamiques et géométriques
sur les trajectoires virales, nous proposons donc de modéliser les étapes précoces
d’entrée au niveau de la particule virale. Parmi ces étapes nous avons distingué 3
modules fonctionnels au cours desquels les intéractions entre la cellule hote et le
virus vont moduler les trajectoires virales et impacter le succés de 'infection. Ces
modules peuvent étre modélisés séparément par des modeéles biophysiques distincts
mais intéragissent entre eux. En effet, chacun va modifier la structure du virus et
donc son comportement dans les modules suivants. Premiérement les virus se lient a
des récepteurs spécifiques sur la membrane des cellules et sont ensuite internalisés.
Les récepteurs utilisés lors de ce premier module sont les premiers contacts du virus
avec son hote et les changements structurels de la particule commencent alors. Ces
changements peuvent ensuite étre déterminants pour la voie empruntée par le virus
dans le cytoplasme et le succés de I'infection. Ainsi, par exemple, les glycoprotéines
de fusion de nombreux virus enveloppés se métamorphosent entiérement au cours de
I'entrée virale |9]. En particulier, I'intéraction du rétrovirus leukosis aviaire avec son
récepteur membranaire permet & certaines des glycoprotéines de son enveloppe de
devenir sensibles au pH. Ces protéines sont alors capables de déployer leur activité
fusogénique a pH bas [10] et permettent ainsi au virus de sortir de I’'endosome avant
d’étre dégradé dans un lysosome. Dans le cas des AAV, les récepteurs spécifiques des
différents sérotypes conduisent a des voies endosomales trés variées [1]. Chaque voie
endosomale se caractérise par un environement vésiculaire. Le virus est donc relaché
a différents endroits et dans un certain état structurel selon la voie endosomale
empruntée. De plus, le nombre de virus endocyté dans un méme endosome semble
étre un parameétre important de la cinétique de sortie (voir chapitre 5). Le deuxiéme
module que nous considérons est 1’étape endosomale. Bien que la dynamique de
sortie puisse étre calculée a partir de la cinétique du changement conformationnel
de protéines actives (voir chapitre 5), I'endroit et I’état dans lequel le virus sort
va dépendre de la voie empruntée et donc de son intéraction avec les récepteurs
spécifiques a la surface des cellules (premier module). Enfin, I’endroit et le pH
de ’endosome quand sort le virus sont des paramétres clés du troisieme module : le
mouvement libre du virus dans le cytoplasme jusqu’a un pore nucléaire. Par exemple,
dans le cas de ’AAV, 'acidité de I’endosome au moment de sa sortie va plus ou moins
dénaturer sa capside, ce qui va ensuite influencer 'ubiquitination de celle-ci une fois
dans le cytoplasme [11]. Une ubiquitination qui va accélérer sa dégradation par les
protéasomes mais qui, d’autre part, semble aider au démantélement de la capside au
niveau du pore nucléaire et donc a 'import de I’ADN dans le noyau [11]. Finalement,
afin de trouver la voie d’entrée optimale du virus, ces trois modules, avec leur modéles
biophysiques distincts, devront étre couplés; ’état du virus a la sortie d’'un module
servant de parameétre d’entrée au suivant. Par exemple, dans le cas de ’AAV, il serait
intéressant de mesurer 'mpact du pH a sa sortie de I’endosome sur son ubiquitination
et son taux de dégradation par les protéasomes dans le cytoplasme.

6 2. Modéliser les étapes précoces de l'infection virale
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3 Le mouvement libre dans le cytoplasme

Les virus ne peuvent se déplacer seuls autrement que par diffusion. Pour traver-
ser la cellule et atteindre un pore nucléaire, ils utilisent donc les méchanismes de
transport cellulaire. Le cytoplasme est un milieu trés emcombré, contenant de nom-
breux organelles, un cytosquelette et une grande concentration de macromolécules
libres [12]. La mobilité d'une particule dans ce milieu va dépendre de nombreux
parameétres comme sa taille, sa forme et les nombreuses intéractions électrostatiques
avec les différents composants cellulaires. Il a été observé que des particules neutres
sphérique de taille inférieure a 25nm diffusent librement dans le cytolasme [13]. A
partir de 45nm, leur mouvement est considérablement réduit. De récent progrés en
imagerie microscopique permettent a présent de visualiser le comportement n vivo
de virus et notamment leur trajectoire au sein de la cellule [14, 15, 16]. Il est &
présent admis que la plupart des virus alternent entre diffusion libre et transport
actif le long des MTs wvia des moteurs moléculaires tels que la kinésine (du noyau
vers la périphérie) ou la dynéine (de la périphérie vers le noyau). Ces moteurs sont
ATPases, c’est a dire qu’ils tirent leur énergie de la déphosphorylation de ’ATP. De
plus, il a été observé que de nombreux cargos sont transportés in vivo par plusieurs
moteurs de différente polarité. Ainsi des virus comme I’'Herpes [17], I’Adénovirus [18]
ou encore le HIV [19] se lient a plusieurs dynéines et kinésines et un mouvement bi-
directionnel est observé. Il semblerait qu'un méchanisme de régulation favorise tout
de méme le mouvement vers I'une ou l'autre direction (vers le noyau lors de 'entrée
du virus dans la cellule) [20]. L’analyse de ces trajectoires aléatoire peut se traduire
en équations stochastiques. La position X(t) & un temps ¢ de la particule virale est
traitée comme un processus stochastique [21, 22| et la dynamique dépend alors des
forces exercées sur la particule. Dans le cytoplasme, les nombreuses collisions entre
le virus et les autres macromolécules sont modélisées par un bruit blanc gaussien

QD%—ZV, ou D est la constante de diffusion du virus et W le mouvement Brownien

standard. En I'absence d’autres forces, la vitesse de laparticule est régie par I’équa-

tion dynamique % = V2D %. Cependant, quand le virus alterne entre diffusion
libre et transport actif le long des MTs, sa position X (¢) & un temps ¢ est donnée

par

) V2Dw pour une particule libre
X - I (1)

V(s(t)) pour une particule liée

avec s(t) une variable décrivant I’état interne du virus et qui tient compte du nombre
de kynésines et de dynéines le transportant. V est la vitesse résultante, qui dépend
a la fois de 'organisation du réseau de MTs et du chargement exercé par le virus. La
description stochastique intermittente (1) est suffisante pour générer des simulations
de Monte Carlo des trajectoires mais ne peut conduire a des résultats théoriques
généraux. Dans les deux premiers chapitres, nous présentons donc une procédure
mathématique permettant de réduire (1) a une dynamique de Langevin générale
ou la vitesse X est donnée par la somme d’un terme de dérive b (X) prenant en
compte les périodes ballistiques du virus le long des MTs et d'un terme reprenant
les intéractions aléatoires du virus avec son environnement 2Ddd—vl/ (voir figure 2)

dX dW
%:b(x)jt\/ﬁw. (2)

3. Le mouvement libre dans le cytoplasme 7
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3.1 Calcul du terme de dérive dii au transport le long des
microtubules

Dans le premier chapitre, nous présentons le calcul d’une dérive équivalente
constante B dans une cellule radiale 2-dimensionnelle. Dans le deuxiéme chapitre,
nous étendons nos calculs & une dérive radiale-dépendante b(r) et nous considé-
rons de plus le cas d’une géomeétrie cylindrique représentant les neurites (neurones
et dendrites). Pour calculer ces dérives nous suivons la procédure suivante : nous
considérons un virus partant d’une position @y et nous calculons le temps moyen
u(xg) nécessaire a ce virus pour atteindre un MT par pure diffusion et s’y lier. Nous
considérons ensuite qu’il est transporté par les moteurs moléculaires vers le noyau
pendant un temps moyen t,, (et donc sur une distance d,, = Vt,,) avant d’étre
relaché & une position finale moyenne x; (voir FIG. 3). Pour une diffusion faible
D < 1, nous posons alors

- [Ty — @0

b (x0) ~ u(xo) + tm ()
Pour une cellule idéale radiale 2-dimensionnelle, nous considérons le domaine fon-
damental Q, défini comme le domaine angulaire d’angle © bordé par deux MTs
voisines. Nous considérons que les MTs sont uniformément réparties et donc que
© = 2% ou N est le nombre total de MTs (voir figure 4). Du fait que les MTs soient
uniformément répartis, nous considérons que le virus est toujours relaché dans Q et
étudions donc le mouvement du virus dans . Dans le cyroplasme, le virus bouge
par pure diffusion jusqu’a ce qu’il s’attache a un MT qui est a présent la frontiére
latérale 992, de Q (voir figure 4). Nous simplifions le mouvement bidirectionnel du
virus le long du MT et considérons q’une fois lié, le virus est transporté vers le noyau
a une vitesse constante V' pendant un temps moyen ¢,,. La longueur moyenne d’une
période ballistique est donc de d,,, = V't,,. Le virus est ensuite relaché avec un angle
uniformément distribué dans [0; ©] & une distance fixe du noyau. Une fois le virus
libre dans le cytoplasme, le processus de diffusion/transport actif peut de nouveau
recommencer. Ce scénario se répéte jusqu’a ce que le virus arreigne un pore nucléaire.
Le premier temps de passage moyen (PTPM) u(x = (r,0)) d’un virus diffusant a
partir d’une position initiale & = (r,0) jusqu’a un MT est dolution de I’équation de
Dynkin [21]

DAu(xz) = —1 pour z € (4)

u(x) = 0pourx € d,

%
on

ot 90, = {# = 0} U {0 = O} et Quyy = {r = R} (voir figure 4). Pour un virus
partant d’un angle 6 uniformément distribué dans [0; ©], 'espérance du PTPM a un
MT est donné par (voir chapitre 1)

_ 1 [%=° r? (tan(©) =L 16R* At
u(r)zé/g u(r,@)d9:E< 5 _1)_ZD@2A§(A%—4)’ (5)

=0 n=0

= 0 pour € Iy |

8 3. Le mouvement libre dans le cytoplasme
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Virus |
trajectory

Pure diffusive
movemen
(brownia

motion)

Nucleus
(DNA)
N

Nuclear

. pores | Simulated trajecto
Directed ! (drift+brownian motion)
movement Cytoplasm |

Microtubules |

FIGURE 2 — Représentations de la trajectoire d’un virus. Sur le coté gauche de
la cellule idéalisée, une trajectoire intermittente réelle reprenant des périodes de
diffusion et de mouvement actif le long des MTs est représentée. Sur le coté droit
de la cellule, nous avons représenté deux trajectoires simulées a partir de I’équation
de Langevin (2). L'une d’entre elles est un succes, le virus parvenant a atteindre un
pore nucléaire avant d’étre dégradé.

3. Le mouvement libre dans le cytoplasme 9
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Brownian motion

Brownian
motion

FIGURE 3 — Une étape fondamentale est représentée en ligne pointillée : le virus part d’une
position xq, diffuse librement jusqu’a atteindre un MT o il se lie. Il est ensuite transporté
sur une distance moyenne d,, avant d’étre relaché & une position x¢. La ligne pointillée a
gauche représente une trajectoire équivalente régie par I’équation de Langevin (2). Entre
parenthéses, nous avons précisé les temps moyen pour chaque portion de trajectoire.

oit A, = (2n + 1) §. Pour © petit, (5) peut étre approximé par

~ T2@2
u(r) = TIok (6)

Pour estimer le rayon moyen r,,(ro) auquel un virus partant d’un rayon initial r avec
un angle uniformément réparti dans [0; ©] va se lier & un M T, nous calculons dans un
premier temps la distribution des points d’attache € (r|rg, 6y). Nous rappelons que
la densité de probabilité p (x,t|x¢) d'une particule diffusive partant d’une position
x au temps t est solution de ’équation de diffusion

t ~
W = DAp(x,t|xo) pour x €
p(x,t|xe) = 0 pour x € I,

8]9 <X7 t|X0>

= 0 pour x € 8(2%,5 ,
on

avec pour condition initiale p(x,0[xg) = 6 (x —Xp). La distribution € (y|xo) des
points d’attache aux MTs est alors donnée par

¢ (ylxo) = / " (. o) dt, (7)

10 3. Le mouvement libre dans le cytoplasme
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Initial radius

Pure Brownian
diffusion

Final radius
Directed motion

FIGURE 4 — Une étape fondamentale dans €. Le virus part d’un rayon inital rg, avec
un angle uniformément distribué dans [0; ©], il diffuse librement durant un temps moyen
u(ro) jusqu’a ce qu’il se lie & un MT (9€2,) & un rayon moyen 7(rg) ; Il est alors transporté
sur une distance moyenne d,, = V't,, vers le centre de la cellule avant d’étre relaché avec
un angle aléatoire a un rayon final ;. Les temps moyens de chaque portion de cette étape
fondamentale sont indiqués entre parenthéses.

3. Le mouvement libre dans le cytoplasme 11
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ol le flux j est défini par

ap (Xv t‘XO)

] t =—-D .
J (ya |X0) on xX=y

Quelques calculs présentés dans le chapltre 1 conduisent a la distribution moyenne
des points d’attache € (r|ro) = & f@ (r|ro, 0) dbp pour un virus démarrant & une
position @y = (19, 0y) ou by est unlformement distribué entre 0 et © :

B 2 4y R* + (rrg)”
elrlro) =g (l” (rrv - rm) in (RZV o)) )

&- Le rayon d’attache moyen 7y, (ro) est alors donné par : 7y, (ro) =
). Ainsi,

ou v =

E (€ (r|ro)

ron (1) = E (rlro) = /0 72 (rlro) dr. (8)

Dans la limite © < 1 le terme d’ordre principal de r,,(ro) est

P (1) = (1 - ?—22) (9)

Finalement, dans une géométrie radiale 2-dimensionnelle simplifiée, un virus com-
mencant a diffuser & un rayon initial ry sera relaché, aprés une étape de diffu-
sion/transport fondamentale, & un rayon moyen final rf(ro) = Tm(ro) — dp =

. La dérive ra-

12D
diale dépendante b(r) comptant pour les périodes ballistiques le long des MTs est
alors approximativement donné par

o (1 + ?—;) — d,, aprés un temps moyen u(ro) + t, ~

r—re(r) - dyn r?—;

7 o’
a(r) +tm  tm+ 1255

b(r) =

(10)

Dans le premier chapitre, nous obtenons I’amplitude de la dérive constante B grace a
une méthode itérative : nous considérons qu’une fois le virus a été transporté et rela-
ché dans le cytoplasme, celui-ci commence une nouvelle étape de diffusion/transport
fondamentale jusqu’a ce qu’il atteigne la surface du noyau. Nous calculons alors le
nombre moyen d’étapes fondamentales nécessaires et le temps moyen correspondant
pour que le virus partant de la membrane périphérique atteigne le noyau ; la valeur
de la dérive B est ensuite calculée pour que le temps moyen d’une particule, dont
la vitesse est solution de 1’équation de Langevin (2) avec la dérive constante B, soit
égale au temps moyen itératif précédent. Dans la limite © < 1, le terme dominant

de B est donnée par
dm

B~ b . (11)
1+ (1+Z—‘:f> & +0(eY

Dans les chapitres 1 et 2, nous imposons que les frontiéres de €2 soient entiérement
réfléchissantes et nous comparons la densité de probabilité & 1’équilibre obtenue
avec des simulations Browniennes ou le virus peut alternativement diffuser et étre

12 3. Le mouvement libre dans le cytoplasme
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Microtubules
(radius =€)

FIGURE 5 — Coupe perpendiculaire & I’axe principal du dendrite. Les N MTs sont de longs
et fins cylindres uniformément distribués le long de I’axe principal du neurite.

transporté le long des MTs et la densité de probabilités théorique si les trajectoires
du virus sont régies par 1’équation de Langevin (2) avec les dérives (constante ou
radiale dépendante) calculées précédemment. Dans les deux cas, les densités sont
trés similaires a celle obtenue par simulation, ce qui représente un résultat central
de ces deux chapitres et qui confirme la pertinence de notre approche. De nombreux
virus comme I’herpes [23]) infectent les neurones et se déplacent le long des neurites
pour atteindre le corps cellulaire et le noyau. Pour calculer ici la dérive équivalente
aux périodes ballistiques du virus le long des MTs, nous modélisons les neurites par
de long cylindres (rayon R) et nous considérons que les N MTs sont de long cylindres
(radius € < R) répartis uniformément et parallélement le long de 'axe principal du
neurite. Une coupe perpendiculaire a l’axe principal du neurite est représentée dans
la figure 5. Par symétrie, pour toute position & dans le neurite, nous considérons
que la dérive b(x) est constante et orientée suivant ’axe principal du cylindre :
b(x) = Bz avec B une constante et z le vecteur unitaire de I’axe principal. Pour
une constante de diffusion suffisamment petite, 'amplitude de la dérive B est égale
a la vitesse effective du virus dans le neurite (24, 25| : B = tiﬁw ou t,, est le
temps moyen de liaison du virus & un MT, d,, = Vt,, la distance moyenne d’un
transport actif et 7 le PTPM d’un virus uniformément distribué dans le cytoplasme
a un MT. Dans la limite ¢ < 1, en approximant 7 = #(6) avec Ao(€) la valeur
propre principale de I'opérateur laplacien dans la coupe 2-dimensionnelle du neurite
contenant N petits disques absorbants de rayon € nous obtenons dans le chapitre 2 :

d, 2NDd,,

b= 7 T aNDL, - RIn (1)

3. Le mouvement libre dans le cytoplasme 13
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3.2 Analyse quantitative du mouvement libre du virus dans
le cytoplasme

La probabilité P, et le temps moyen 7, pour qu le virus libre dans le cytoplasme
parvienne & un des n pores nucléaires permet de quantifier globalement ’étape de
déplacement libre du virus dans le cytoplasme. Du fait que le rayon e des pores
nucléaires est petit, les calculs de P, et 7, sont des problémes d’"échappée belle"
et se basent sur la théorie des perturbations singuliéres. Pour calculer ces quantités,
nous partons de I’équation de Langevin des trajectoires (2) et introduisons de plus
un taux de dégradation k(x) pour tenir compte de la possible dégradation des virus
par les protéasomes ou leur immobilisation par le cytosquelette. P, et 7, sont alors
liés a la densité de probabilité conditionnelle p(x,t) représentant la probabilité de
trouver la particule en vie (non dégradée) dans I’élément de volume x + dx au temps
t. Cette densité de probabilité est définie par [26],

p(x, t)de = Pr{X(t) €  +dx, 7" > t,7% > t|p;}, (13)

ol 7% est le premier temps de passage d’un virus non dégradé & un pore nucléaire, 7

le premier temps ot le virus est dégradé ou immobilisé et p; la distribution initiale
des particules virales dans le cytoplasme. Un résultat essentiel dans notre démarche
est que p(z,t) est solution d’une équation aux dérivées partielles, connue sous le nom
d’équation de Fokker-Planck (EFP), décrivant I’évolution de la densité de probabilité
conditionnelle du virus au cours du temps [21]

%(m,t) = DAp(xz,t) — V- -b(x)p(x,t) — k(x)p(x,t) pour x € Q
p(x,0) = pi(x) pour x € Q, (14)

Le premier terme du membre de droite indique la contribution de la diffusion
(constante de diffusion D), le deuxiéme correspondant a la dérive équivalente au
transport actif le long des MTs et le dernier terme indique la dégradation dune
partie des particules (taux k). De plus, nous avons a la frontiére du domaine

p(x,t) = 0 pour x € IN,
J(x,t) ng = 0 x€d—0IN,. (15)

La premiére condition indique qu’idéalement, le virus est absorbé par le premier
pore nucléaire rencontré, I’ensemble des pores formant donc une frontiére purement
absorbante 0N, . La deuxiéme condition indique que le reste de la frontiére cellulaire
00 — ON, (membrane extérieure et reste de I'enveloppe nucléaire) est purement
réfléchissante, ng étant le vecteur normal sortant au point @ de la frontiére. Le
vecteur J(x,t) de densité de flux est donné par

J(x,t) = —DVp(zx,t) + b(x)p(x, ). (16)

A partir de la densité de probabilité conditionnelle p(x,t), nous pouvons & présent
exprimer la probabilité P, et le temps moyen conditionnel 7, pour que le virus
atteigne un pore nucléaire [26] :

P,=1- /Qk(:c)ﬁ(:c) dx, (17)

14 3. Le mouvement libre dans le cytoplasme



INTRODUCTION (FRANGALIS)

ou p(x) = [, p(e,t) dt est solution de I'équation
DAp(x) — V -b(x)p(x) — k(x)p(x) = —pi(x) for x e

avec les conditions mixtes aux frontiéres (15). Le temps moyen conditionel 7, est
quant & lui donné par [26]

[ @iz [ @)

Ty = , (18)
1-— /Qk(ac)ﬁ(ac) dx
ou gq(x) = [, sp(x, s)ds satisfait [26]
—p=DAg(x) — [V -bq] —kq for x e (19)

avec les conditions aux frontiéres (15). Quand la dérive b provient d’un potentiel
® : b =—-V®, dans la limite £ < 1, le terme principal asymptotique de P, et 7,
pour des petits pores nucléaires € < 1 est donné par [26]

e D
PTL: D(x

_2() _%q
o Joe D k(x)dx+e” D

(20)

) B(x)
4Dne fﬂ € D dx

i _2(x) _%o
s Joe D k(x)dx+e D

Tn =

ol @ est la valeur constante du drift radial ®(x) sur le noyau quand celui ci est
pris au centre de la cellule, les n pores nucléaires étant uniformément répartis a sa
surface. Ces formules ne sont valables que dans le cas ol le drift est constant a la
surface du noyau et surtout, elles ne tiennent pas compte des possibles intéractions
entre les différents pores. Ainsi, pour un nombre important de pores occupant une
surface restreinte du noyau comme c’est le cas dans de nombreuses cellules animales,
ces formules ne sont plus valides; en effet, lim,,_, ne2<<1 7, = 0. De récents travaux
[27, 28] ont commencé & étudier finement ces intéractions. Dans le chapitre 3, nous
quantifions ces intéractions quand un grand nombre n > 1 de pores absorbants sont
uniforméments répartis sur une structure 3 (¥ étant par exemple le noyau), leur
surface nmwe? restant petite par rapport a celle de . En particulier, nous trouvons

e ¥
que dans la limite H <1
( _%(x)
_[825 ‘D dx
_ [o%
PTL - B(x) P(x) )
_2x Jose” D dx
(4n1De+DéE>ka(x)e D dx+-0% o5
(21)
P(x)
1 1 -
_ <4nDe+DC’E>fQ€ D dx
Tn = I

_20x) fase” D d
1 1 o € X
<4HDE+D702) Jo k(x)e™ D dx 100 =

\

ou CY; est la capacitance électrostatique de la surface conductive 0X. Par exemple,
si la structure est un noyau sphérique de rayon ¢ alors Cy = 47d. Quand le ratio

3. Le mouvement libre dans le cytoplasme 15
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TL’TI'E
o%
cules |pu‘rement diffusives (®(x) = 0) ne pouvant étre dégradées (k = 0), le temps
moyen (21) est identique & celui trouvé par des considérations électrostatiques dans
[29] (formule (54)). Un unique virus peut étre suffisant & infecter une cellule. Par
conséquent, quand M virus indépendants entrent dans une cellule, il est important
de connaitre la dynamique du premier virus qui réussira a atteindre vivant un pore
nucléaire pour délivrer son patrimoine génétique. Dans le chapitre 4, nous caculons
donc le temps de passage moyen conditionnel 7., (M) & un pore nucléaire du pre-
mier virus parmi M. Les M trajectoires des virus sont considérées indépendantes
et nous introduisons le temps de passage conditionnel 73, du j%™¢ virus & un pore.
Comme dans [26], nous considérons le temps 7;,,(M) auquel le premier virus at-
teint la frontiére absorbante dN, et le temps Tfirst(M ) auquel il est dégradé. La
probabilité P(t) que le premier virus atteigne un pore nucléaire, en vie, avant un
temps t est donnée par :

P(t) = PT{T}lirst(M) < t’T}lirst(M> < lefirst(M)?pi}‘ (22>

o = de 0% couverts par les pores absorbant est négligeable, pour des parti-

Le premier temps de passage conditionnel 7.5 (M) du premier virus a un pore est
alors défini par

) = [t = [ (o) - POt (23)

Les calcus présentés dans le chapitre 4 conduisent a

1— (1 — [ J(s)ds)M
1—(1—Py)"

P(t) = (24)
ou J(s faﬂ X, t).n,dSy, avec ny le vecteur normal sortant au point x et J(x, t)
le Vecteur de densité de flux défini par (16). Pour estimer le terme d’ordre principal de
Trirst(M) dans un asymptotique en temps long (k < 1 et € < 1), nous approximons
p(x,t) par son premier terme exponentiel

p(x,t) =~ p(x,0)e " avec /p(x, 0)dx = 1. (25)
Q

ol \g = % ([21] p.175), est la premiére valeur propre (voir aussi [30]). Cet asymp-
totique en temps long conduit alors a ’expression du flux suivante

P, ¢
Jt) = e . 26
() = 22 (20
En remplacant fo s)ds par son approxiamtion (26) dans (23) nous obtenons
LN\ M
. (1—Pn (1-5%)) —(1-P)M
Tfirs M) = dt. 27
M) = | T 0

Et quelques simplifications conduisent finalement & (voir chapitre 4)

(M) = 25 (Z (¢ - ) - k) . (28)

16 3. Le mouvement libre dans le cytoplasme
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ouné=1—P, (0<E&<1). Quand le nombre de virus atteignant un pore nucléaire
avant d’étre dégradé augmente, le premier temps de passage moyen conditionnel du
premier survivant décroit assez logiquement. Pour £ petit, le terme d’ordre principal
de Tpirst(M) est donné par

Tfirst<M) ~ i
(&) M

alors que quand ¢ tend vers 1, c’est a dire quand la plupart des virus sont dégradés
avant d’avoir atteint leur but, nous obtenons ’approximation

Trirst(M) & 7o (§). (30)

Dans tous les calculs ci-dessus, nous avons considéré que le taux de dégradation
et d’immobilisation des virus était faible comparativement & I’échelle de temps de
la diffusion et nous avons donc pu utilisé des asymptotiques en temps long pour
calculer P, et 7,. Cependant pour certains vecteurs de génes, et notamment les
vecteurs synthétiques purement diffusifs (b = 0) qui sont fréquemment piégés dans
le cytosquelette ou dégradés par des protéases, le taux de dégradation ne peut plus
étre considéré petit. Dans le chapitre 4, nous calculons donc les asymptotiques de P,
et 7, dans la limite £ > 1. L’analyse n’est plus basé sur des asymptotiques en temps
long mais sur des développements asymptotiques des solutions avec recollement au
voisinage des pores absorbants. Nous considérons que les vecteurs synthétiques (ou
plasmides) sont initialement uniformément répartis dans le cytoplasme p;(x) = py =
ﬁ. Pour calculer la probabilité P, donnée par (17), nous commengons par résoudre

(29)

I'équation (18)

DAp(x) — k(x)p(x) = —po = — (31)

[
avec les conditions au bord (15). Quand ﬁ est tres petit devant k, pour une par-
ticule partant loin des pores nucléaires absorbants,nous approximons la solution de

I'équation (31) par

P
B(x)

Cependant cette solution ne satisfait pas les conditions au bord at notamment les
conditions absorbantes sur dN,. Nous construisons donc deux solutions prés du
bord p;,... pres de ON, et p2, .. prés de ON, = 90 — N, et recollons ensuite ces
deux solutions avec la solution loin du bord pyye-. Dans un systéme de coordonnées
locales (p, s) prés de 0f2, ou p mesures la distance normale par rapport a 0f2, me-
surée positivement dans €2, et s sont les variables tangentielles dans le plan p = 0,
nous effectuons un développement de Taylor du taux de dégradation le long de la
coordonnée normale p,

Pouter (X) = + O(D) (32)

k(p, s) = ko(s) + ka(s)p + O(p"). (33)

ou k(p=0,s) = ko(s) et g—’;(p =0,s) = k1(s). Nous utilisons ensuite le changement
de variable

oy R REp (k)
u=u(p.s) = WIEL ene sy — (200 (34)
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et quelques calculs présentés dans le chapitre 4 conduisent a

G ko(s)
Pinner (4, 8) = il Gi(u) — MA@(U) ; (35)
[Q]3(s)D Az( %)
et
Gi' (455
2 " | gite) — — NP
Pinner (1 5) 1Q]8(s)D Gilw) A (Bk(os()%> ) .

ou A; and G; sont respectivement les fonctions d’Airy et de Scorer ([31], p.446 et
448). Ces solutions prés du bord satisfont les conditions d’absorption et de réflexion
imposées et tendent vers pyuser loin du bord. Pour un taux de dégradation suffisam-
ment régulier, quand 9N, est constituée de n pores absorbants (rayon (€;),,,)
centrés en (zy), ., sur 99, en injectant (32), (35) et (36) dans (17), nous mon-
trons que le terme “d’ordre principal de P, est alors donné par :

Pl e o () "

ou ky = inf, k(x,) et py = infieon, po(s). Concernat le temps moyen de premier
passage conditionel 7, des calculs trés similaires (voir les détails dans le chapitre 4)
conduisent & ’expression asymptotique

Wli%( gro(/B). .

Dans le chapitre 4 nous comparons les formules asymptotiques obtenues (37) et
(38) contre des simulations Browniennes et nous observons une concordance pour
des taux de dégradation trés grands (de l'ordre de 200 fois le taux observé expéri-
mentalement [32]) qui pourraient caractériser des cellules anormales ou des vecteurs
particuliérement vulnérables.

4 L’étape endosomale

Le séjour du virus dans ’endosome est une autre étape fondamentale dans ’entrée
virale. Pour sortir de ’endosome avant un temps critique, le virus est aidé de gly-
coprotéines ou de protéines de pénétration suivant qu'’il est enveloppé ou non. Pour
remplir leur fonction, la plupart de ces protéines actives changent de conformation
en parallele de 'acidification de ’endosome. Dans le chapitre 5, nous développons un
modéle biophysique de la sortie endosomale dont la cinétique semble déterminante
dans l'infectivité du virus. En utilisant des processus de Markov a sauts |33, 34],
nous estimons dans un premier temps et a pH donné le temps moyen nécessaire
a ce que le nombre de ligands (des protons par example) liés a la protéine active
dépasse un certain seuil critique et provoque son changement conformationnel. En
utilisant le nombre moyens de protons liés & HA1 une sous-unité de la glycoprotéine
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hémagglutinine (HA) de la grippe a différents pH [35], nous retrouvons grace a notre
analyse les cinétiques de changement conformationnel observées expérimentalement
[36]. Ce qui en outre confirme I’hypothése que seuls les changements structurels
de HA1 sont pH dépendants, les autres changements en découlant spontanément
[35, 37]. Combinant ce modeéle biophysique de changement conformationnel avec
une dynamique Poissonnienne d’entrée des ligands, nous développons ensuite un
modeéle dynamique pour la sortie de ’endosome de virus contenant un faible nombre
de protéines actives comme par exemple ’AAV dont la capside ne contient que 7
protéines de pénétration VP1 [38]. Nous considérons en effet que ce type de virus
lyse la membrane endosomale et sort dés qu'une de ses protéines actives change
de conformation. En particulier nous calculons que le temps de sortie moyen d’un
AAV serait aux alentours de 20 4+ 5 minutes (ce qui reste cohérent avec les 10 mi-
nutes observées expérimentallement). Lorsque plusieurs virus sont endocytés dans
un méme endosome, nous considérons que la sortie du premier virus provoque la lyse
de '’endosome et donc la sortie de tous les virus. Le nombre de virus présents dans
I’endosome devient donc un paramétre important dans la cinétique de sortie. Ainsi,
si les virus doivent sortir dans un intervalle de pH compris entre 6.1 et 6.3, nous
avons calculé qu’il fallait idéalement 5 virus dans 1’endosome. Enfin, grace a notre
modéle biophysique, nous démontrons que la taille de I'’endosome qui peut varier
au cours du temps via des événements de fusion et de division des endosomes [2]
n’impacte pas significativement la dynamique de sortie des virus.

4.1 Le modéle de changement conformationnel

La durée du séjour endosomal du virus dépend de sa capacité a lyser la mem-
brane de I'endosome pour s’échapper dans le cytoplasme. La lyse est induite par
le changement conformationnel de glycoprotéines ou de protéines de pénétration.
Nous considérons qu’un virus contient np protéines actives (glycoprotéines ou pro-
téines de pénétration) formeées de ng sites ot peuvent se lier des ligands (protons,
protéases endosomales ... ). Quand le nombre de ligands liés & une protéine atteint
un seuil critique n.., le changement conformationel se produit. Pour analyser le chan-
gement conformationel de la protéine active, nous étudions donc le nombre de sites
occupés X (t,c) au temps ¢, pour une concentration donnée ¢ de ligands. Entre ¢ et
t + At, le nombre de sites occupés peux soit croitre avec une probabilité r(X, ¢) At
quand un ligand supplémentaire se lie & la protéine, soit décroitre avec une probabi-
lité {(X, c)At quand un ligand est relaché, soit rester inchangé avec une probabilité
1 — (X, c)At — r(X, c)At. En introduisant la variable normalisée x(t,c) = eX (¢, c)
ol € = n% et Ax = x(t+ At, c) — z(t, ¢), nous obtenons les probabilités de transition

Prob{Az = €|z(t,c) = x} = r(z, c)At,
Prob{Ax = —¢lz(t,c) = x} = l(z, ¢) At,
Prob{Az = 0|z(t,c) =z} = (1 —r(x,c) — l(z,c)) At.

Quand la concentration de ligands c est fixe, la probabilité p(x,y,t, c) que le ratio
x(t, c) de sites occupés soit égal & y au temps t, sachant qu'a t =0, z(t = 0,¢) = x,
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est solution de 'équation de Kramers-Moyal [33] :

op =€
E = La:p:/r(xvc)ZE

(az)np(xa y? t? C)

n=1

+ 2,0y (_? (0.)" p(z, y, 1, ). (39)

n:

3

n=1

Le moment ou la protéine active change de conformation correspond au premier
temps de passage moyen 7(z,c) de z(t,c) au seuil x, = 2= sachant que 2(0,c) = .
7(x, ¢) satisfait I'équation [39] :

L,7(x,c) = —1 pour z in [0, x|,
ot (x,c)
Ox
Pour estimer 7(c) = 7(x¢(c), ¢), nous considérons le nombre moyen 0 < zy(c) < .

de ligands liés a la protéine active pour une concentration ¢ de ligands. Pour ¢ < 1,
le terme d’ordre principal de 7y(c) est [33] :

7(z,c) = 0 pour z = x. et =0 pour x = 0.

n oo 1-(5=g) ). (a0

ou
27
Cleo) 1 L (D) @ole)0)
r(zo(c),c)  P(wesc)
et

l(z,c)
r(z,c)

La formule (40) relie les affinités relatives des ligands (concentration c) pour les sites
des protéines actives avec le temps moyen 79(c) au bout duquel la protéine va chan-
ger de conformation. Dans le chapitre 4, nous validons notre modéle de changement
conformationel avec les données expérimentales rapportées pour ’hemagglutinine
(HA) de la grippe. En utilisant le nombre moyen de ligands (des protons ici) liés
a HA1 une sous unité de HA a différents pH [35], nous retrouvons les cinétiques
expérimentalles du changement conformationnelle de la protéine [36]. Notre analyse
confirme ’hypothése que seul les changements structurels de HA1 sont pH dépen-
dants, les autres changements intervenant au cours de la métamorphose de HA ayant
alors lieu spontanément [35, 37].

4.2 Modéle de sortie endosomale et résultats

Notre modéle s’applique particuliérement aux petits virus nus contenant peu de
protéines actives (~ 10) comme ’AAV. Dans ce cas, nous considérons que le virus
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sort de I’endosome dés qu'une de ses protéines actives a changé de conformation.
Une fois la membrane lysé par un virus, nous supposons que tous les virus contenus
dans I’endosome sont libérés dans le cytoplasme. Il a en effet été observé que des
virus sauvages permettaient & des virus mutants dépourvus de protéines actives
de redevenir infectieux [40]. Les protons entrent activement grace a des pompes
ATPases uniformément distribuées dans la membrane de I'endosome. Ayant peu
d’information sur l'activité de ces pompes, nous modélisons l'arrivée de protons (ou
lactivition des autres ligands souvent pH dépendante) par un processus Poissonien
d’itensité A. Pour estimer la concentration de ligands ¢, dans I’endosome au moment
7. ol s’échappe le virus, nous calculons dans un premier temps la probabilité P(c)
qu’'une protéine active change de conformation avant qu'un nouveau ligand n’entre
ou soit activé dans I’endosome (c est fixée). Dans le chapitre 5, nous montrons que

P(c) =1~u(zo(c)), (41)
avec u la solution de
(L, — N u(x) = —Apour0 <z <z,
du(z) = 0 pour z =0,
dx
u(z) = 0 pour x = x.. (42)

Pour résoudre (42), nous appliquons la méthode asymptotique de [33] et obtenons

_ze—zg(c)

Oc)=1-— A A éx c E
Fole =1 )\—i-(C'(e,c))_l +)\+(C(e,c))_1 <T‘( “ )) ' (43)

Le changement conformationel d’une protéine active suffit pour que tous les virus
présent dans I'endosome soient relachés dans le cytoplasme. En utilisant la pro-
babilite P.(5) (1 — (1 — P2 (c(5))™"") [TZy (1 — P2 (c(i)))™"" qu'un changement
conformationnel survienne aprés qu’exactement j ligands soient entrés (ou aient

été activés) dans I’endosome, nous calculons finalement la concentration moyenne

Pe(j
< ¢, >= Z]Alf—]‘/ de ligands dans ’endosome quand sortent les virus (V4 est le

volume de l’endosome)

<= iH( <z>>>-1>w‘ )

=0

Dans le chapitre 5, nous calculons aussi le temps moyen 7, de sortie des virus

<1+§: 1+A/M) (45)

ou \; = Tl En utilisant les parameétres dynamiques relevés pour ’hémagglu-

tinine, nous trouvons que pour un taux d’entrée des ligands A = 0.15s7! (voir
chapitre 5), pour un virus contenant np = 7 protéines actives (comme ’AAV), le
temps moyen 7, est alors approximativement de 20min., ce qui reste cohérent avec
les 10min. observées expérimentallement [14]. De fagon intéressante, quand 10 virus
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au lieu d’un sont présents dans I’endosome, le temps moyen de sortie décroit de 35%
. Enfin, nous remarquons que, dans notre modéle, la taille de I’endosome n’impacte
que peu la cinétique de sortie du virus. Ce qui laisse a penser que les fusions entre
endosomes et donc leur variation de volume au cours du temps observé in vivo [2]
pourrait étre négligée.

5 Conclusion

Nous présentons ici un des premiers modeéles biophysiques a 1’échelle molécu-
laire de ’entrée des virus dans les cellules. A partir de la géométrie cellulaire et
de données dynamiques mesurables du virus comme son coefficient de diffusion ou
I’affinité des protéines de sa capside pour certains ligands, notre approche permet
d’obtenir des paramétres dynamiques globaux de I'infection comme le temps de sor-
tie du virus de I'endosome ou la probabilité que celui-ci, une fois relaché dans le
cytoplasme, atteigne un pore nucléaire et délivre son patrimoine génétique avant
d’étre dégradé par les protéasomes. Notre modéle de I’étape cytoplasmique libre du
virus s’applique particuliérement a certains vecteurs synthétiques purement diffusifs.
La constant de diffusion du complexe (ADN-vecteur) et son taux de dégradation
dans le cytoplasme dépendent crucialement du vecteur utilisé. Notre analyse per-
mettrait donc de concevoir des vecteurs optimisant le taux de transfection. Chaque
étape dans l'entrée du virus modifie sa structure et donc ses intéractions futures
avec la cellule. Un bruit stochastique intrinséque & chacune de ces modifications
structurelles conduit a des comportements trés différents au sein d’un méme groupe
de virus. Nous avons développé des modéles biophysiques distincts pour chacune
des étapes précoces d’entrée du virus. Ainsi, pour tenir compte de la singularité de
chaque virus, nous pourrons coupler ces différents modéles biophysiques, ’état du
virus calculé a la fin d’une étape servant de paramétre d’entrée a la suivante.
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A virus is small entity that hijack the cell machinery to reproduce and that can
infect all types of organisms from the bacteria to animals and plants. While some
viruses reproduce without causing disease, in most cases they trigger an immune
response that destroys them. Since first observation of the tobacco mosaic virus by
Martinus Beijerinck in 1898, more than 5, 000 species of viruses have been identified
and many species shall remain undiscovered. Viruses can be roughly decomposed
into three major parts : genetic payload, capsid and, for some of them, envelope.
The genetic payload contains the genetic information of the virus and is coded by
genes, that are composed of nucleic acids (RNA or DNA). The genetic payload
carries the information to replicate the virus and is contained in a capsid which
is formed with proteins coded by the viral genes. The capsid protects the genetic
payload and facilitates the viral replication. Finally, a fat envelope surrounds some
viruses when they are outside a cell (see figure 1). Although viruses share that
same organization, they greatly vary in shape and spread in many different ways.
For example, the ebola virus has a filamentous shape and spreads person-to-person
through body fluids (blood, sperm, saliva ...) while the HIV has a quasi spherical
structure and is transmitted through sexual contact.

1 Viral structure

A viral particle is composed of a nucleic acid coated by a protective shell, the
capsid, that is built of polypeptides. Some viruses are moreover surrounded by a fat
envelope. As the capsid, the envelope plays a key role in viral infection by helping
the virus to deliver its nucleic acid to the cell replication machinery. The polypep-
tides that form the capsid are encoded by the viral genome and self assemble to form
the capsid in the presence of the viral genome. The nucleic acid and its protective
capsid are called the nucleocapsid. Depending on the number of polypeptides that
compose it, the capsid varies in shape from an helical shape when a single poly-
peptide is stacked around a central axis, to more complex icosahedral shapes when
many polypeptides are recruited (see figure 2). The polypeptides that compose the
capsid are organized in morphological units called capsomers. The capsomers of heli-
cal viruses are composed of a single polypeptide and are also called protomers while
for icosahedral viruses there are two kind of capsomers : the pentamers composed
by 5 identical subunits which occupy the 12 corner positions of the icosahedron and
the hexamers formed by 6 identical subunits which occupy the faces and edges (see
figure 3).

The capsid protects the genetic information of the virus coded by a nucleic acid
(RNA or DNA). The size of the genome varies with species : the smallest code for
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FIGURE 1 — Scheme of an enveloped virus : the nucleic acid is coated by a capsid that is
in turn surrounded by a lipid bilayer derived from the host cell membrane

FIGURE 2 — Viruses greatly vary in shape. The two main type of shapes that depend on
the number of polypeptides that compose the capsid are the helical shape (left-hand side)
when a single polypeptide is stacked around a central axis to form a helical structure and
the icosahedral shape when many polypeptides are recruited (right-hand side).
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(a) (b)

FIGURE 3 — (a) An icosahedron has 20 identical equilateral triangular faces. (b) In most
icosahedral capsids, each triangular face is made up of three identical subunits. Hence, a
capsid contains 60 subunits. The five subunits surrounding each vertex are arranged in a
five-fold symmetry : a pentamer.

only 4 proteins and have a mass of 10° daltons while the biggest have a mass of 108
daltons and code for more than one hundred of proteins (a dalton is the approximate
mass of a hydrogen atom that is 1.66 E=*"kg).

2 Application of viruses in gene therapy

The viruses use the cell machinery to reproduce and have thus developed evolu-
tionary tools to enter the cell and transport towards the different compartment of
the cell such as the nucleus where DNA viruses deliver their genetic information to
reproduce. Consequently, they are interesting tools to transfer genetic material and
treat diseases in gene therapy on the one hand, and to study fundamental aspects of
cellular biology, like endocytosis or DNA replication [41]. Here, viruses are labelled
by a fluorescent dye and are tracked using novel imaging techniques. In particular,
tracking of single simian viruses 40 entry has revealed the presence of a new intra-
cellular organelle, the caveosome [42]. In viral gene vectors, the genetic payload is
modified to include the transferred genes that will make the cell produce a foreign
or missing substance. The viruses have developed evolutionary tools to reproduce
and consequently the viral vectors efficiently transfer the therapeutic DNA to the
nucleus. But the use of viruses presents several limitations : viruses are not always
safe (viral vectors have been implicated in the death of at least one patient, leading
to the suspension of clinical trials [43, 44]), they trigger an immune response and
thus cannot be administrated repeatedly, and the size of the transferred DNA is
limited by the nucleocapsid architecture. To overcome the difficulties impose by the
use of viruses, gene therapy with non-viral vectors, such as naked DNA or complexes
of polymers/lipids with DNA | is important. Yet non-viral vectors present low levels
of transfection and expression of the gene, and to combine the high efficiency of vi-
ruses with the advantages of non-viral vectors, virus-like particles that integrate the
evolutionary tools developed by viruses such as the protecting capsid or the active
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proteins that permit the endosomal escape are now investigated. For example, virus-
like particles build out of hepatitis B virus surface proteins have been developed [45]
to efficiently transfer genes into human hepatocytes. Developing such hybrid vectors
require a molecular understanding of the early steps of infection, that start when
the virus binds to the cell membrane and that end when the nucleic acid reaches its
replication site, that is the nucleus for DNA viruses.

3 Early steps of viral infection

Replication cycle starts with the attachment of viruses to specific receptors at
the cell surface. Because the type of receptors present on the membrane depend on
the cell population, each virus infect only a certain type of cells, which determines its
tropism. A striking example is the HIV that only infects the human T cells, coated
by the CD4 receptors that interact with the glycoprotein gp120 of the viral envelope
[46]. After the virus attaches to the cell surface, it enters into the cell through the
receptor mediated endocytosis or by membrane fusion for certain enveloped viruses.

The viruses that are endocytosed begin their cytoplasmic journey in an endosome
that ferry them as passive lumenal cargo. Endosomes are sorting vesicles towards
the different compartment of the cell and the Rab family of proteins plays a crucial
role in determining endosomal localization [1|. One of the principal pathway is the
Rab5-Rab7 mediated one (see 2] for details) where viruses are endocytosed in early
endosomes that maturates into late endosomes. During that maturation process, the
cell activates proton pumps located on the endosomal membrane to decrease the pH
and viruses have to escape the endosome before being digested low-pH activated
proteases. Although the escape process is fundamental, it is not yet clearly unders-
tood but following acidification and depending on whether the virus is enveloped
or naked, endosomal escape is triggered by the conformational changes of glycopro-
teins or penetration proteins, involved in membrane disruption. The conformational
change of these active proteins is initiated by the binding of pH activated ligands
or protons up to a critical threshold [35]. Because viruses are degraded by low-pH
activated proteases, and that their partial denaturation could enhance the nuclear
import of their genome [11], the time dependent pH of the endosome plays a critical
role in the infection process. Indeed, the viral escape triggered by the pH-dependent
conformational change of active proteins must occur in a certain pH range, that
is after the virus is sufficiently denatured or tagged by certain low-pH activated
proteases, and before it is completely degraded.

To produce proteins and replicate themselves viruses must generate messenger
RNAs (mRNAs) from their genomes, and the mRNA production mechanism depends
on their genome organization. The nucleic acid (RNA or DNA) can be either single
stranded (ss) or double stranded (ds) and the ssRNA can be either positive-sense
or negative-sense, depending on its complementary to the viral mRNA : while a
negative-sense RNA strand is identical to mRNA and can be immediately translated,
a positive-sense strand is complementary to mRNA and must be first converted
to a negative-sense strand by an RNA polymerase. In addition, retroviruses, such
as the HIV, use a reverse transcriptase that transcribes single-stranded RNA into
single-stranded DNA. The mRNA production strategy is then driven by the genome
organization : for example, the single RNA strand of a (+)sense RNA virus is first
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FIGURE 4 — Baltimore classification of viruses : depending on their genome organization
and their subsequent mRNA production mechanism, viruses are divided in seven categories.

converted to a (-) strand to be translated while a the double strands of a dsDNA virus
is transcribed by the cell into the mRNA molecule that will produce the proteins. The
Baltimore classification of viruses is based on the mechanism of mRNA production
and thus divides viruses in seven categories (see figure 4)

— I : dsDNA viruses (e.g. Adenoviruses, Herpesviruses, Poxviruses)

— II: (+)ssDNA viruses (e.g. Parvoviruses)

— III : dsRNA viruses (e.g. Reoviruses)

— IV : (+)ssRNA viruses (e.g. Picornaviruses, Togaviruses)

— V : (-)ssRNA viruses (e.g. Orthomyxoviruses, Rhabdoviruses)

— VI : ssRNA-RT viruses : (+)sense RNA with DNA intermediate in life-cycle
(e.g. Retroviruses)

— VII : dsDNA-RT viruses (e.g. Hepadnaviruses)

In particular, to transcribe and replicate their genome, DNA viruses depend on
the cell transcription machinery and the DNA polymerase that are located in the cell
nucleus. Consequently, once they are released in the cell cytoplasm, DNA viruses
have to reach a small nuclear pore where they either enter the cell nucleus when
they are sufficiently small, such as the parvovirus, or dock and disassemble at the
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nuclear pore to deliver the genetic information, such as the hepatitis B virus, the
herpesvirus or the adenovirus (see figure 5). On the other hand RNA or reverse
transcribing viruses, such as Influenza or HIV respectively, uncoat in the cytoplasm
before translocating into the nucleus. To reach a nuclear pore, DNA viruses entirely
rely on diffusion and cellular transport systems. The cell cytoplasm is a highly
crowded fluid containing many organelles, a cytoskeleton and a high concentration
of diffusible macromolecules [12|. The mobility depends on many parameters such
as the size, the shape and the nature of the interactions between viral particle and
the surrounding cellular components. Non interacting spherical particles with size
up to &~ 25nm are freely diffusible in the cell cytoplasm [13]. Increasing the size
above 45nm reduces considerably the motion. Recent progress using single particle
tracking has revealed the complexity of viral trajectories [14, 15, 16]. It has now been
recognized that such trajectories consists of a succession of free or confined diffusion
and /or ballistic periods. These later involve transport along MTs or actin networks
which requires energy. Motors are ATPase : they move along MTs powered by the
dephosphorylation of ATP. There are two types of motors : the kinesins that move
from the centrosome, an organelle located nearby the cell nucleus (minus end), to
the periphery of the cell (plus end) and the dyneins that move from the plus end to
the minus end. There is significant evidence that cargoes in-vivo are transported by
multiple motor. Indeed, many viruses such as herpes virus [17], adenovirus [18] or
HIV [19] bind motors of different polarities which lead to a bidirectional transport.
A regulatory mechanism should favor the switch dynamics in one direction leading
to a net velocity in that particular direction [20]. The diffusion periods and the
random organization of the MTs network lead to a broad class of viral trajectories.
Because the viruses can be trapped in the crowded cytoplasm or digested through
the ubiquitin-proteasome machinery, that is they are tagged for degradation with
a small protein called ubiquitin to be later degraded by proteolysis in the large
protein complexes proteasomes, the random trajectory of the virus and consequent
resident time in the cell cytoplasm impacts the infection rate. In particular, the
viral shape impacts the diffusion constant and the probability the virus is trapped,
and filamentous viruses are particularly vulnerable. Finally we can schematically
decompose the early steps of DNA viruses infection into 6 steps (see figure 6)

1. The virus binds to a specific receptor and is internalized in an endosome
2. It traffics inside the endosome through the cortical actin network

3. It is transported actively in the endosome along the MTs

4. Tt escapes from the endosome

5. The viral motion alternates between diffusion and active transport along the
MTs

6. Virus finally reaches a nuclear pore and delivers its genetic material.

After their assembly, the new viral particles are released from the host cell to infect
other cells. While enveloped viruses bud from the host cell, a process where they
acquire their host cell derived envelope, most of viruses destroy the cell membrane
and kill it to escape.
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FIGURE 5 — Early infections steps of some nuclear-replicating viruses. While RNA or
reverse transcribing viruses such as Influenza or HIV respectively uncoat in the cytoplasm
before translocating into the nucleus, DNA viruses dock to the nuclear pore complex and
deliver their genetic payload or enter the nucleus if they are sufficiently small, such as

parvoviruses. This figure has been adapted from [47].
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FIGURE 6 — Left-Hand Side : Single particle tracking of a small DNA virus (AAV) in
a living cell (from [14]). (1) The virus diffuses in the extracellular matrix. (2) The Virus
searches for a specific receptor at the cell membrane. (3) The virus enters the cell in an
endosome. It later escapes and alternates between diffusion and active transport along
MTs. (4) The Virus finally enters the nucleus through a nuclear pore to deliver its DNA.
Right-Hand Side Schematic representation of the early steps of infection for a DNA
virus. (1) A viral particle binds to a specific receptor and is internalized in an endosome.
(2) Virus traffics inside the endosome through the cortical actin network. (3) The virus is
transported actively in the endosome along the MTs. (4) Virus escapes from the endosome.
(5) The viral motion alternates between diffusion and active transport along the MTs. (6)
Virus finally reaches a nuclear pore and delivers its genetic material.

4 Modeling the early steps of viral infection

Viruses have developed evolutionary tools to efficiently deliver their genes and
reproduce, and their in vivo tracking reveal unexpected aspects of cellular biology
such as new ways of endocytosis [42]. In particular, the endosomal escape and the
cytoplasmic trafficking to the nucleus remain a major obstacle to gene delivery. In-
deed, many non-viral gene vectors fail to escape the endosome and are routed toward
a lysosome where they are digested, and the cytosolic motion of large DNA mole-
cules is limited by physical and chemical barriers of the crowded cytoplasm |3, 4].
Whereas molecules smaller than 500 kDa can diffuse, larger cargos such as viruses
or non-viral DNA particles, require an active transport system [5| such as the micro-
tubules. To understand the viral tools at a molecular level and thus design efficient
synthetic gene carriers, quantitative models of the early steps of viral infection are
needed : while modeling the endosomal escape of viruses will help to understand
the molecular mechanisms underlying their reliable escape in a certain pH range, a
model of the free cytoplasmic step will measure, for example, how the active trans-
port along microtubules increases the probability the virus reaches a nuclear pore
compared to a pure diffusive non-viral gene vector.
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TABLE 1

of
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FIGURE 7 — Intracellular trafficking model based on mass action law (extracted from [48]).
The viral particle transits between different states (right-hand side) such as endosomal,
cytoplasmic or nuclear bound state. Transition rates and other parameters of the model
(table on the left-hand side of the figure) are mostly fitted to experimental data.

The early mathematical models to quantify the success of gene delivery |6, 7, §]
divide the infection process into various states, such as as being transported inside
the endosome, freely trafficking in the cytoplasm or entering the cell nucleus, and use
mass action-law law to account for the transition between the states and the possible
degradation of the virus (see figure 7). The principal limitation of these approaches
is that the transition rates between the different viral states are not derived from
underlying viral dynamics but mostly fitted to experimental data. Consequently,
this type of analysis does not explain how general quantitative parameters of the
infection such as the endosomal escape mean time or the probability a virus reaches
a nuclear pore before being degraded depend on the cellular geometry (distribution
of MTs ...) and dynamical parameters of the virus (diffusion constant, affinities
of viral active proteins with ligands ...). Although an alternative approach in [48]
using the cellular geometry allowed the authors to give a macroscopic description
of the adenovirus concentration so that they can analyze the effect of varying the
number of MTs on the invasion process, the authors do not provide explicit analy-
tical formulas that measure the impact of the cell and virus parameters on general
infection outcomes : For example, the impacts of the MTs network organisation, the
diffusion constant of the virus or the number and size of nuclear pores on the proba-
bility and the mean time the virus reaches a nuclear pore to deliver its DNA cannot
be analytically quantified. In addition, each early step of viral infection modifies the
viral molecular structure and modulates the viral behavior in the following steps of
infection. For example, the capsid denaturation of the adeno-associated virus (AAV)
in the endosome that depends on the escape time impact its cytoplasmic ubiquitina-
tion [11] that in turn competitively increases its proteasome-mediated degradation
and enhances capsid disassembly and subsequent nuclear import [11]. Yet, the early
models are only valid at a population level and cannot account for these indivi-
dual variations in activity. Thus, to account for the individual structural changes
that impact the behavior of each particle, biophysical models at the single unit are
required.

4. Modeling the early steps of viral infection 31



INTRODUCTION

To quantify the impact of the cell geometry and the dynamical parameters on
viruses trajectories, we propose a stochastic approach to model comportment of an
individual particle in each early step of infection. In these infection steps, we iden-
tify three functional modules in which the host-virus interaction modulates the viral
trajectory and the infection process : the viral binding to the cell membrane, the
endosomal step and the free cytoplasmic trafficking after the viral release from the
endosome. These modules interact with each other through a complex host-virus
communication and require specific biophysical models. In the first module, viruses
interact with specific cell surface receptors, that will determine the fate and/or the
viral pathway in the cytoplasm. For example, fusion proteins of widely disparate
enveloped viruses completely metamorphose during viral entry [9]. In particular,
the interaction of the retrovirus avian leukosis virus with the cell membrane specific
receptor, transforms its pH-independent glycoproteins to pH-dependent ones. As a
consequence the fusogenic activity at low pH [10] is deployed which is necessary for
the endosomal escape. In the case of AAV, cells and serotype specific receptors lead
to a broad class of endocytic pathways [1]. Each pathway is characterized by a speci-
fic endosomal environment and an escape dynamical process, both lead to different
viral escape locations. In addition, the viral binding to the cell membrane determines
the number of viruses per endosome which is crucial for the escape dynamics (see
chapter 5). The second module consists of the endosomal step. Although, the escape
time from endosomes can be computed from the conformational changes of viral ac-
tive proteins, the escape location depends on the surface receptor interactions (first
module). Both the escape location and the associated pH are key input parameters
for the third module, which consists of the free cytoplasmic step starting from the
endosomal escape and ending at a nuclear pore where DNA viruses deliver their
genetic information. The first two modules impact that free cytoplasmic step : the
endosomal pathway and the escape location depends on the membrane receptor the
virus binds and we have seen above that in the case of AAV, the pH dependent cap-
sid denaturation in the endosome impacts the cytoplasmic degradation and nuclear
import rates [11]. Finally, to find the optimal infection pathways, all three modules
should be coupled and the output parameters of one will serve as the inputs for the
next one. For example, in the case of AAV, it would be interesting to determine
how the escape pH and subsequent capsid denaturation impacts cytoplasmic degra-
dation rate through the proteasome-mediated digestion of the capsid. Because each
virus is routed to a specific pathway through a complex host-cell communication, a
quantitative analysis of each single pathway would be needed. More fascinating, as
viruses infect cells and the host cell interaction start to change, viruses should see a
different cell environment depending on their arrival time at the surface. Hereafter
we present the biophysical models we have constructed for the endosomal step and
the free cytoplasmic step, and the principal quantitative results we have obtained

5 Models and Results

5.1 The endosomal step

A fundamental aspect of viral trafficking concerns the sojourn time in the endo-
somal compartment. To escape endosomes, before a critical time, the viral payload
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is assisted by active proteins , that are glycoproteins for enveloped viruses or pene-
tration proteins for non enveloped viral particles. To fulfill their goal, these proteins
have to undergo a conformational change often resulting from endosome acidifica-
tion. Because the exit time plays a critical role in the viral infectivity process, we
develop in chapter 5 a model to estimate the escape time. Using a discrete Markov
jump analysis [33, 34|, we first estimate, at a given pH, the mean time the number
of bound protons (or other pH-activated ligands) reaches a critical threshold, which
triggers the conformational change of a given active protein. Combining these com-
putations with experimental data [35] on the mean number of protons bound to HA1
(a subunit of the influenza hemagglutinin (HA)), we recover measured conformatio-
nal change kinetics [36] and confirm the hypothesis that only HA1 conformational
change is pH-dependent and other rearrangements in HA proceed spontaneously
[35, 37]. Combining the conformational change discrete model described above with
an endosomal Poissonnian entry of ligands, we derive for non enveloped viruses that
contain a small number of penetration proteins, such as AAV with 7 VP1 pene-
tration proteins [38], the mean escape time from the endosome and the associated
pH. In that computations, we consider that viruses escape from the endosome when
at least one conformational change occurs. In particular, we find that for AAV the
mean time to escape is around 20 + 5 minutes (which is consistent with the obser-
ved 10 minutes) and when the virus has to escape in a pH range of 6.1-6.3, this
is optimally achieved when 5 viral particles are inside an endosome. Finally, this
biophysical model predicts that the size of the endosome, which may vary following
endosomal fusion or split [2], does not impact much the escape.

Conformational change model The resident time of a virus inside an endosome
depends on its ability to disrupt and escape the membrane. Disruption is induced
by glycoproteins or penetration protein conformational change. We consider a virus
carry np independent proteins (glycoproteins or penetration proteins) formed of ng
sites that can bind competitively ligands such as protons or endosomal proteases.
When the number of bound sites at a single protein reaches a critical threshold n..,
a conformational change occurs that lead to membrane disruption and viral escape.
To follow the conformational change for a single glycoprotein or a penetration pro-
tein, we count the amount of occupied sites X(¢,¢) at time ¢, for a given ligand
concentration c. During time ¢ and t + At, the number of bound sites can either
increase with a probability r(X, ¢)At when a ligand arrives to a free site, decreases
with probability {(X, c)At when a ligand unbinds or remains unchanged with pro-
bability 1 —I(X, ¢)At —r(X, c)At. Using the scaled variable z(¢, c¢) = eX (¢, ¢) where
€= nis and Az = x(t + At, ¢) — z(t, ¢), we obtain the transition probabilities

Prob{Ax = €|z(t,c) = x} = r(z, c)At,
Prob{Ax = —¢|z(t,c) = x} = l(z, ¢) At,
Prob{Ax = 0lz(t,c) =z} = (1 —r(z,¢c) — l(x,c)) At.

When the ligand concentration is fixed, the probability p(x,y,t, ¢) that the number
of bound is equal to y at time ¢ z(t, c) = y, given that initially the number of bound
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is z (z(t = 0,c¢) = x) is solution of the backward Kramers-Moyal equation [33] :

op = e

E = L,p= 7‘(1‘7 C) ; E (aw)np(mv y,t, C)
+ Uz, c) Z (_7:') (0:)" p(x,y,t, c). (46)

The first time a glycoprotein or a penetration protein is filled up to a critical thre-
shold x, = ¢ is the mean first passage time 7(z,c) that the level of bound ligands
x reaches the level z., starting at a point x for a given concentration ¢, and satisfies
[39] :

L,7(z,c) = —1 for z in [0, 2],
or(x,c)

9 =0 for x = 0.

7(z,¢) =0 for x = 2, and

To estimate 7y(c) = 7(zo(c), ), we consider the number of bound ligands at equili-
brium 0 < z¢(c) < z.. For e < 1, 79(c) is approximated by [33] :

_ ze—zg(c)

To(c) = C(e,c) | 1 — (f«((ic’?» ‘ , (47)
where
o
1 e (L) (zo(c),c)
™ @0 blaed)
and

Formula (47) links the affinities between the ligand (concentration ¢) and the binding
sites of glycoproteins or penetration proteins to its conformational change mean time
7o(c). We validate our model with experimental data for the influenza hemagglutinin
(HA) : using the mean number of protons bound to the subunit HA1 of HA at
different pH [35], we recover the reported conformational change kinetics of the
protein. We also confirm the hypothesis that only HA1 conformational change is
pH-dependent and other rearrangements in HA proceed spontaneously [35, 37|

Endosomal escape model and results We consider that all viruses escape when
at least one of them disrupts the membrane as suggested for instance by experiments
where a wild type parvovirus was shown to rescue the infectivity of a mutant devoid
of escape protein [40]. In addition, our model apply to naked viruses that contain
few (=~ 10) penetration proteins and we thus assume viruses escape when at least
one of the active proteins changes of conformation. To model the proton influx
through pumps uniformly distributed over the endosomal membrane [49], we use

34 5. Models and Results



INTRODUCTION

a Poisson process of rate . To estimate the mean ligands concentration c,, at
which viruses escape the endosome, we first estimate the probability P°(c) that a
penetration protein changes conformation before a new ligand enters or is activated
(the concentration c is fixed). In chapter 5, we show that

Pl(c) =1—u(x(c)), (48)
with u solution of
(Ly — Nu(z) = —Xfor0<uz <z,
du(z) = 0 for z =0,
dz
u(z) = 0 for x =z, (49)

To solve (49), we apply the methods of [33] and we obtain

_ ze—z0(c)

Oe)=1-— A A ix c 6
Flo =1 A (C (e,¢)) +A+(c(e,c))*1 (r( “ )> ' (50)

One protein conformational change is enough to induce viral escape. Using the pro-

bability P.(j) (1 — (1= P2 (c(4))""") [T.2 o (L= P%(c(i)))™"" that at least one
conformation changes occurs after exactly j hgands have entered the endosome (or

have been activated), we finally compute the mean concentration < ¢,, >=

NVy

for which viral particles escape the endosome (1} is the volume of the spherical en-
dosome)

<cTe>::N1V0 - fI( 60@»y4>mmp. (51)

]: 1=0

In the chapter 5, we also estimate the mean escape time 7.,

<1+§: Z11+A/M) (52)

where \; = Tl Using the parameters fitted with the conformational change of

the influenza HA, we find that for a ligand entry rate A = 0.1557! and np = 7
penetration proteins, the mean time 7, is approximately equal to 20min., which
is comparable to the 10min. reported experimentally [14]. Interestingly, for 10 vi-
ruses, the mean escape time decays by 35% compared to a single one. In addition,
the endosomal radius impacts not that much the escape dynamics. Consequently,
endosomal fusion or split [2| observed in vivo can be neglected in the biophysical
modeling.

5.2 The free cytoplasmic step

Once the DNA viruses are released from the endosome, they entirely rely on
diffusion and cellular transport systems to reach a nuclear pore. The analysis of
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random trajectories of viral particles is formulated in terms of stochastic equations.
The position X(t) at time ¢ of a particle is treated as a stochastic process [21, 22]
and the dynamics depends on the forces applied on the particle. In the cytoplasm,
the high frequency collisions between a viral particle and the rest of the molecules
are modeled by the classical noise term QD%, where D is the diffusion constant
and W is the standard Brownian motion. In the absence of any other forces, the
equation for the velocity is simply % = 2D %. When the virus switches between
diffusion and an active transport, the physical description of the position X (¢) at
time ¢ is

) vV2Dw for a free particle
X = , (53)
V(s(t)) for a bound particle

where the variable s(t) describes the internal state, accounting for the nature and
the number of bound kinesins and dyneins. V is the resulting transport field defined
by the MTs network organization, it depends on the load exerted by the transported
virus on motors.

Although the previous description using equation (53) may allow to generate
simulations of trajectories, we can not use it for a general analysis. In the chapters 1
and 2, we present a mathematical procedure to coarse grain the switching dynamics
(53) so that the velocity X can be written as the sum of a permanent effective drift
term b (X) that accounts for the ballistic periods along the MTs and the random
interactions noise term v2D %Y (see figure 8)

X dW
o b (X) +v2D T (54)
Computation of the drift accounting for ballistic periods along MTs

In the first chapter, we present the procedure to derive a constant drift B in
a simplified two-dimensional radial cell while in the second chapter, we extend the
computations to a radial dependent drift b(r). In that chapter we also compute the
drift in a cylindrical geometry that models the viral motion in neurites. Derivation
is based on the following procedure : we consider a virus that diffuses (diffusion
coefficient D) from a position @y in the cell cytoplasm and we compute the mean
first passage time u(xy) and the mean location X(x¢) where it binds to a MT and
begins active motion. We also consider the mean release location x; (see FIG. 9)
from MTs network and in the small diffusion approximation D < 1 we have

- [Ty — @0

b (xo) ~ - TS (55)

where ¢, is the mean time of an active run along MTs. In a two dimensional radial
geometry, we consider the fundamental domain 2 defined as the two dimensional
slice of angle © between two neighboring microtubules. We consider here that micro-

tubules are uniformly distributed and thus © = 2%, where N is the total number of

N
microtubules (see figure 10). Because microtubules are taken uniformly distributed,
we can always release the virus inside the slice (2, between two neighboring micro-
tubules. Thus the movement of the virus will be studied in € : inside the cytosol,

the viral movement is purely Brownian until it hits a microtubule which is now the
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FIGURE 8 — Schematic representation of the viral trajectory approximation : on the
left-side of the idealized cell, a real trajectory consists of intermittent Brownian and
drift epochs, whereas on the right-side, we show two simulated trajectories obtained
by equation (54). In one of them, the viral particle arrives alive to a nuclear pore,

while in the other, it is killed inside the cytoplasm. The round dots on the nucleus
surface represent nuclear pores.
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Brownian motion

Brownian
motion

FIGURE 9 — The fundamental step is represented with a dotted line; a virus starts at a
position xq, diffuses freely, binds to a MT over a distance d,,, and is then released at a final
position x¢. The solid line represents a trajectory generated by the steady state equation
(54). In the parenthesis, we point out the mean times for each portion of trajectories.

lateral boundary 92, of () (see figure 10). When the virus binds to a MT, we simplify
its complex bidirectional motion and processivity and we assume the bound particle
moves towards the nucleus with the mean constant velocity V' during a mean time
t;n- The mean length of an active run is thus d,,, = Vt,,. When the particle is relea-
sed away from the microtubule, inside the domain, the process can start afresh and
the particle diffuses freely. Because the Smoluchowski limit of the Langevin equa-
tion does not account for the change in velocity, we release the particle at a certain
distance away from the microtubule, but at a fixed distance from the nucleus (at
an angle chosen uniformly distributed), see figure 10. To summarize, the virus tra-
jectory is a succession of diffusion steps mixed with some periods of attaching and
detaching to microtubules. Thus scenario repeats until the virus hits a nuclear pore.
The MFPT to a microtubule u (x = (r,6)) of a virus starting initially at position
x = (r,0) is solution of the Dynkin’s equations [21]

DAu(xz) = —1forx e (56)

w(xz) = 0forx e dQ,

ou

o 0 for & € 90y |

where 9Q, = {# = 0} U {0 = ©} and Q.. = {r = R} (see figure 10). For a virus
that starts with an angle 6 uniformly distributed in [0; ©], the averaged MFPT to a
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Pure Brownian
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FIGURE 10 — A fundamental step in Q. The virus starts at a radius ro, with an angle
uniformly distributed in [0; ©], it diffuses freely during a time wu(rg) until it binds to a
MT (8€,) at a mean radius 7(rg); it has then a directed motion over a distance d,,, =
V't before being released randomly at a final radius r¢. Mean times of each piece of the
fundamental step are written inside parenthesis.
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one of the wedge is given by (see chapter 1)

1 [o=° r? (tan (©) 2L 16RZ A
u = — ) do = -1) - o7
wr =g/ wro 4D( B ) —~ DO2NI (X2 — 1)’ (57)
where A\, = (2n + 1) §. For © small, equation (57) can be approximated by
- 7”2@2
u(r) = TIok (58)

To estimate the position 7, () a virus that starts uniformly distributed at a distance
ro from the cell center will attach preferentially to the microtubule, we determine
the distribution of exit points € (r|rg,0y). The probability density function (pdf)
p(x,t|xg) to find a diffusing particle in a volume element dx at time ¢ inside the
wedge Q), conditioned on the initial position x = xg is the solution of the diffusion
equation

ap (X7 t|XO)

5 = DAp(x,t|xo) for x € Q

p(x,t|xe) = 0 for x € 9Q,

ap (X7 t‘XO)

o = 0for x € 0y ,

where the initial condition is p (x,0|xg) = 0 (X — Xg). The distribution of exit points
€ (y|xo) is given by

c(ylxo) = [ (wtheo) . (59)
0
where the flux j is defined by
. ap <X7 t‘XO)
t[xg) = — DRI MX0) .
J (y,t[xo) on X=y
Some computations lead to the averaged exit point distribution  (r|ry) = & f o—0 € (7|70, 00) dbly

for a viral particle starting initially at position @y = (r9,6p) where 6 is umformly
distributed between 0 and O :

_ 2 41y R* + (rrg)”
2 (T ) gy (2T
= gy (i (o) o (T )
where v = §. We define the mean exit radius as r,, (ro) = E (€ (r|ro)). Thus,
R
Tm (10) = E (r|rg) = / e (r|ro) dr. (60)
0

In the limit © < 1 the leading order asymptotics of r,,(rg) is

r (o) ~ (1 + %2) (61)
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Finally, in a two-dimensional geometry, a virus starting at a distance ry from the

center will be released at a mean final radius r(r¢) = 7, (10) —dim, = 19 <1 + %2) —d,,

after a mean time @ (rq) + t,, =~ 12D +t . The radius dependent drift b(r) that
accounts for ballistic periods along MTs is then approximately given by
r—rs(r) - dm r?—;

— ®2
u(r) +tm b +1r255

b(r) = (62)

In the first chapter, the constant amplitude B of the radial steady state drift is
obtained by an iterative method. After a virus has moved a certain distance along
a microtubule, we assume it is released at a point uniformly distributed on the final
radial distance from the nucleus, ready for a new random walk. This scenario repeats
until the virus reaches the nucleus surface. We compute the mean number of steps
and the subsequent mean time a virus reaches the nucleus. Finally, we deduce the
amplitude of the effective drift using the following criteria : the Mean First Passage
Time (MFPT) to the nucleus of the iterative approximation is equal to the MFPT
obtained by solving directly an Ornstein-Uhlenbeck stochastic equation. In the limit
O < 1, the leading order term of the drift amplitude B is

dm
B~ tn . (63)
1+(1+Z—ﬁ)§—4+0(@4)

In chapter 1 and 2, we impose reflecting boundaries in the domain  and compare
the steady state distribution obtained by running intermittent Brownian trajectories
solutions of (53) with the theoretical ones in a Langevin description (54) for both the
constant (63) and radial dependent (62) drifts we computed. In both cases, curves
match very nicely, which is a central result of these chapters.

Many viruses such as herpes virus [23| travel in long axons or dendrites which
can be approximated as thin cylinders (radius R and length L). We compute the
steady state drift that accounts for the directed motion along MTs by modeling the
N MTs parallel to the dendrite principal axis as cylinders (radius € << R, Length
L). The cross-section €2 of the dendrite is shown in FIG. 11.

Due to the cylindrical symmetry, for any position x, the steady state drift b(x)
is equal to Bz where B is a constant and z the principal axis unit vector along the
dendrite. In a small diffusion approximation (D < 1), the leading order term of B
is equal to the effective velocity [24, 25| : d e m 18 the mean time the
virus binds to a MT, d,,, = Vt,, the mean length "of a run and 7 the MFPT to a MT.
For small MTs radius € < 1, using that 7 ~ with A\g(€) the principal eigenvalue
of the two-dimensionnal cross section of the éendrlte w1th the N small absorbing
MTs, we obtain that

dy 2N Dd,,
~tm+7T  2NDt, + R2n (1)

(64)

Quantitative analysis of the free cytoplasmic step The probability P, and
the mean time 7,, to reach one of the n nuclear pores provide a global quantification
of the cytoplasmic viral infection step. Because the radius of the absorbing pores
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Microtubules
(radius =€)

FIGURE 11 — Dendrite cross-section. The N MTs are thin cylinders uniformly distributed
inside the dendrite.

¢ is small, the derivation of 7,, and P, is a narrow escape problem and derivations
are based on singular perturbation theory. To derive such estimates, it is rational to
start from the individual description equation (54). To describe the viral journey in
the cytoplasm, we shall account for the viral degradation or immobilization, modeled
by a steady state degradation rate k(x). To describe the probability P, that a single
virus arrives to a small nuclear pore alive and the associated mean time 7,, we
shall first introduce the survival probability density function (SPDF) p(a,t). This
is the probability to find the viral particle alive (not degraded) inside a cytoplasmic
volume element x + dx at time ¢. It is defined by [26],

p(x, t)de = Pr{X(t) € & + dx, 7" > t,7° > t|p;}, (65)

where 7% is the first time for a live virus to arrive to one of the nuclear pores

area, denoted ON,, 7% the first time that it is degraded, and p; is the viral initial
distribution. The important and deep result [21] is that the SPDF p(x,t) satisfies a
partial differential equation, known as the Fokker-Planck equation (FPE)

—(x,t) = DAp(z,t) — V- -blx)p(x,t) — k(x)p(x,t) for x e
p(w,O) = pz(w) for =€ Qa (66)
which describes how the probability to find a random particle evolves in time. The
first term in the right-hand side is the contribution of the pure diffusion, the second
term corresponds to the drift and the last term is coming from the degradation and

says that at each moment of time, the particle can potentially be destroyed. To
account for the boundary effect, we add the conditions

p(x,t) = 0 for x € IN,
J(x,t) - ng = 0 xe€dd—0IN,, (67)
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where the first condition says that probability to find the particle on ON, is zero.
This is the part of the boundary where it is absorbed irreversibly. This condition
is an idealized description of a nuclear pore where upon hitting this surface, the
particle is instantaneously translocated to the nucleus with probability one and
thus disappears from the cytoplasm. The second condition given on 992 — dN, is
the remaining reflecting area of cell surface, described a reflected particle, ng is the
unit outer normal at a boundary point x. This second condition is defined by the
flux density vector J(x,t) as

J(x,t) = —DVp(x,t) + b(x)p(x,t). (68)

and is zero when no viral particle penetrates the membrane surface. The interesting
property is that the probability P, that a live virus arrives at the nucleus and the
conditional mean time 7,, can be expressed using the SPDF [26] :

P,=1- /Q k(x)p(x) de, (69)

where p(xz) = [ p(e,t) dt is the solution of equation
DAp(x) — V -b(x)p(x) — k(x)p(x) = —pi(x) for x€Q

with the boundary conditions (67). While the conditional mean time 7, is given by

[ itayiz — [ k@)

" 1~ [ Hope)de "
where
q(z) = /OOO sp(x, s)ds (71)
satisfies [26]
—p = DAg(z) — [V -bg) —kq for @€ (72)

with boundary conditions (67). When the drift b is derived from a potential ® :
b = —V®, for a small degradation rate & < 1, leading order asymptotics of P, and
7,, for a small radius € < 1 have been computed in [26]

( q>0
P, =— € >
n P (x) P
D k(x)d
4Dne/Q v k(x)dx +e7

1 / 5
e X
4Dne Jq

7’ pr—
n 1 .
\ 4Dn€/QeCDE?)k(x)dX—l—eq;0

where @, is the constant value of the radial potential ®(x) on the centered nu-
cleus where the nuclear pores are uniformly distributed. These formulas do not

5. Models and Results 43



INTRODUCTION

account for the possible interactions between the small absorbing pores. Because

lim 7, =0, when the number of pores become too large, these expressions are
n—oo,ne2<k1

no more valid and a correction term accounting for the holes interactions is needed.
Recent studies have begun to quantify the interactions between the absorbing win-
dows [27, 28]. In the chapter 3, we quantify how these interactions impact P, and
Tn. In particular, when n > 1 holes are uniformly distributed over a structure 3

such as the nucleus in the cytoplasm, we found that in the limit % <1

4 _ P
[om € P dx

ox
Pn = | | (%) s

1 1 B(x) [ € D dx
k b d o) M——
(4nD6 * DC’E) /Q ()e™ 2 dx + |0%]

1 n 1 / _@d
X
4nDe DCE Qe

- P(x) )
1 1 P(x) f e~ D dx
k =D Jox - %
\ (4nDe+DC’E)/Q (e o dx + S5

where Cy; is the electrostatic capacitance of the conducting surface 0%. For example,

if the structure is a spherical nucleus of radius d, we have Cy, = 47). When the ratio

nmwe?

ox.

parti(|:les| (®(x) = 0) with no degradation activity (kK = 0), the mean time (74)
reduces to the asymptotic formula (54) in [29] derived with electrostatic considera-
tions. A single virus is sufficient to infect a cell and replicate. Consequently, when
M independent viruses enter a cell, it is important to have quantitative information
about the first virus that reaches a nuclear pore to deliver its payload. In the chap-
ter 4, we thus compute the conditioned MEPT 7y, (M) for the first virus among
M to reach a nuclear pore. The M —viruses trajectories are independent and we
shall use the conditioned MFPT 7']{', of the j™ carrier to a nuclear pore. As in |26,
we consider the absorbing time 7¢;,,(M) of the first DNA carrier to the absorbing
boundary 0N, and the first time T]lfirst(M ) it is degraded. The probability the first
DNA carrier arrives to the absorbing boundary before time ¢ conditioned on not
been killed is then given by :

P(t) = PT{T?irst(M) < t’T}lirst(M> < Tﬁirst(M)api}' (75)
The conditional MFPT 7;,4(M) is defined by

o of 9% covered by the absorbing windows is neglected, for pure diffusing

Trirst(M) = /0OO t%it)dt = /OOO (P(c0) — P(t)) dt. (76)

Some computations lead to

1— (1 — [ J(s)ds)M
P(t) = TN (77)

where J(s) = ¢§,, J(x,t).nxdS, with n, the normal derivative at the boundary point
x and J(x,t) the flux density vector defined in (68). Hereafter, we shall estimate the
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leading order term for 7f;.:(M). In the long time asymptotic (k < 1 and € < 1),
we approximate p(x,t) by its first exponential term

p(x,t) = p(x,0)e !, with /p(x, 0)dx = 1. (78)
Q

where \g = % ([21] p.175), is the first eigenvalue (this implies that there is no
contribution of the initial condition on the other eigenfunctions, see also [30]). This
long time asymptotic lead to the flux expression
P, _+
J(t) = e, (79)
Tn
Replacing f(f J(s)ds by its approximation (79) in relation (76) we get

t

M) = [ i <116(1m >23n)M S (50)

And some simplifications lead to the concise expression

TfiTst(M) = % (Z_ (gk - gM) Ml_ k) : (81)

k=0

where £ =1 — P, (0 < ¢ <1). When the number of viruses reaching alive a nuclear
pore decreases, the MFPT of the first survivor increases. For small &, the leading
order term of 7p;.(M) is

Tfirst<M) ~ i
W) M

whereas when £ tends to 1, that is when most of viruses are killed before reaching
their goal, we get the approximation

Trirst(M) &= 7, (8). (83)

In the computations above, we assumed the degradation activity was small compared
to the diffusion time scale. We thus solved narrow escape problems with long time
asymptotics. Pure diffusing synthetic gene vectors (b = 0) are frequently embedded
in the crowded cytoplasm and the killing activity due to proteases is not that small.
In the chapter 4, we thus derive leading order asymptotics of P, and 7, in the
limit &£ > 1. The analysis is quite different from above and is based on matched
asymptotic expansions. We consider a uniform initial plasmid distribution over the

(82)

cytoplasm p;(x) = po = ﬁ To compute the probability Py given by (69), we shall
solve equation (70)
~ - 1
DAp(x) — k(x)p(x) = —po = —W, (84)

with the boundary conditions (67). When ﬁ is much smaller compared to k and for

a particle starting far from nuclear pores, we approximated the solution of Eq.(84)
by

outer = 77N O(D). 85

Pout (X) L (X) + ( ) ( )
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However, this outer solution does not match the absorbing conditions. We thus
construct two inner solutions : the first one p;,,., near N, and the second p3,...
near ON, = 0 — ON, and match the outer solution. In a local coordinates (p, s)
near ON,, where p measures distance from 0N,, measured positively into €2, and s
are tangential variables in the plane p = 0, we expand the steady state radial killing
measure along the radial p—coordinate,

K(p, ) = ko(s) + ka ()0 + O(6?). (36)
where k(p = 0,s) = ko(s) and z—’;(p =0, s) = ki(s). We use the change of variable

=u(p,s ——k0(8)+k1(8)p where (3(s) = /{:1_(5)%
u=alp.s) = LI e (s (D) (87)

and some computations lead to

Gi (2]
Gi(u) — MA@(U)

! , 88
Pinner (U 8) |Q|ﬂ( ) Ai (ﬂ(os()sg) ( )
and
Gi ( Fo(c) )
2 o ™ . . 6(5 D .
Pinner (U, S) - |Q|5(S)D Gz(u) AZ(U) . (89)

where A; and G; are respectively the Airy and Scorer functions ([31], p.446 and 448).
These inner solutions satisfy boundary conditions and match p,.,. For a sufficiently
smooth killing field, when 0N, consists of n well separated small absorbing nuclear
pore (radius (€),,,) centered at (z4),, ., on Of2, injecting (85), (88) and (89) in
(69), we show that the leading order asymptotic of P, is :

]

where ky = inf, k(x,) and py = infsenn, po(s). Concerning the conditioned MFPT
T, very similar computations lead to (see details in chapter 4)

Wli%( gro(/B). o

In the chapter 4, we test the asymptotic formulas (90) and (91) against Brownian
simulations. The matching occurs for a very large degradation rate (more than 200
times the rate observed experimentally [32]) that shall characterize abnormal cells.

6 Conclusion

DNA viruses have developed molecular tools to efficiently transfer their genes to
the cell nucleus and a quantitative description of the early steps of viral infection
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at the single molecule level will help to design new drugs and optimize non viral
gene carriers. Due to a complex host cell-virus communication, the viral particle
continuously undergoes structural rearrangements that modulate its behavior in the
different compartments of the cell, and consequently, models at the single virus le-
vel rather than at a population level are required to account for these individual
variations in activity. We thus propose to divide the early steps of infection in three
functional modules that impact the viral structure and trajectory : the receptor-
mediated entry of the virus, the endosomal routing and the free cytoplasmic motion
to a nuclear pore. While viruses reliably escape the endosomes and efficiently traffic
to a nuclear pore once they are released in the cytoplasm, non-viral gene vectors
mostly failed to escape the endosome and in addition, the vectors that reach the
cell cytoplasm are mainly degraded by proteases or trapped in the crowded cyto-
plasm. To understand the high efficiency of viruses in both of these steps, we have
constructed biophysical models at the molecular level to estimate how general quan-
titative outputs such as the mean escape time from the endosome or the probability
a virus released in the cytoplasm reaches a nuclear pore before being degraded by
proteasomes depend on the geometry of the cell (ligands influx rate in the endo-
some, organization of the MTs network, size and number of nuclear pores ...) and
on the dynamical parameters of the virus (affinities of its active proteins to endo-
somal ligands, diffusion constant, unbinding rate from MTs ... ). Interestingly, we
found that the escape dynamics does not depend on the endosomal size and that
the fusion and fission events that have been observed in vivo [2| should be neglected
in the modeling, that the optimal number of viruses in the endosome to escape in
a certain range of pH is 5 and that the number of nuclear pores more than the
surface covered by all the pores strongly affect the probability and the conditioned
MFPT to a nuclear pore. Finally, to quantify infection success, the three functional
modules shall be coupled, the state of the virus at the end of a module serving as
input parameter for next. For example, the degradation rate used in module 3 is an
input parameter that depends on the state of viral ubiquitination in the cytoplasm,
which depends on the pH course during the endosmal phase, an output of module
2.
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Chapitre 1

Effective motion of a virus trafficking
inside a biological cell, SIAM

Journal of Applied Mathematics 68
(2008)

1 Introduction

Because cytosolic transport has been identified as a critical barrier for synthe-
tic gene delivery [50], plasmids or viral DNAs delivery from the cell membrane to
the nuclear pores has attracted the attention of many biologists. The cell cytosol
contains many types of organelles, actin filaments, microtubules and many others,
so that to reach the nucleus, a viral DNA has to travel through a crowded and risky
environment. We are interested here in studying the efficiency of the delivery process
and we present a mathematical model of virus trafficking inside the cell cytoplasm.
We model the viral movement as a Brownian motion. However, the density of actin
filaments and microtubules, inside the cell, can hinder diffusion, as demonstrated
experimentally [4]. In a crowded environment, we will model the virus as a material
point. This reduction is simplistic for several reasons : actin filament network can
trapped a diffusing object and beyond a certain size, as observed experimentally, a
DNA fragment cannot find its way across the actin filaments [4]. Active directional
transport along microtubules or actin filaments seems then the only way to deliver
a plasmid to the nucleus. The active transport of the virus involves in general motor
proteins, such as Kinesin (to travel in the direction of the cell membrane) or Dynein
(to travel toward the nucleus). Once a virus is attached to a Dynein protein, its
movement can be modeled as a determinist drift toward the nucleus.

Recently, a macroscopic modeling has been developed to describe the dynamics
of adenovirus concentration inside the cell cytoplasm [48]. This approach offers very
interesting results about the effect of microtubules, but neglects the complexity of
the geometry and cannot be used to describe the movement of a single virus, which
might be enough to cause cellular infection. Modeling a virus trafficking imposes
to use a stochastic description. We model here the motion of a virus as that of a
material point, so the probability of its trapping by actin filaments or microtubules
is neglected. In the present approximation, the viral movement has two main com-
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ponents : a Brownian one, which accounts for its free movement, and a drift directed
towards the centrosome or MTOC (Microtubules Organization Center), an organelle
located near the nucleus. The magnitude of the drift along microtubules depends on
many parameters, such as the binding and unbinding rates and the velocity of the
motor proteins [51].

In the present approach, we present a method to approximate a time dependent
dynamics of virus trafficking by an effective stochastic equation with a radial steady
state drift. The main difficulties we have to overcome arise from the time dependent
nature of the trajectories which consists of intermittent epochs of drifts and free
diffusion. We propose to derive an explicit expression for the steady state drift am-
plitude. In this approximation, the effective drift will gather the mean properties of
the cytoplasmic organization such as the density of microtubules and its off binding
rate.

Our method to find the effective drift can be described as follow : first, we ap-
proximate the cell geometry as a two dimensional disk and use a pure Brownian
description to approximate the virus diffusion step. This geometrical approximation
is valid, for any two dimensional cell such as the in vitro flat skin fibroblast culture
cells [48] : indeed, due to their adhesion to the substrate, the thickness of these cells
can be neglected in first approximation. Second, when the distribution of the initial
viral position is uniform on the cell surface, we will estimate, during the diffusing
period, the hitting position on a microtubule. By solving a partial differential equa-
tion, inside a sliced shape domain, delimited by two neighboring microtubules, we
will provide an estimate of the mean time to the most likely hitting point. Finally,
the amplitude of the radial steady state drift will be obtained by an iterative method
which assumes that, after a virus has moved a certain distance along a microtubule,
it is released at a point uniformly distributed on the final radial distance from the
nucleus, ready for a new random walk. This scenario repeats until the virus reaches
the nucleus surface. Finally, we will compute the mean time, the mean number of
steps before a virus reaches the nucleus and the amplitude of the effective drift by
using the following criteria : the Mean First Passage Time (MFPT) to the nucleus
of the iterative approximation is equal to the MFPT obtained by solving directly an
Ornstein-Uhlenbeck stochastic equation. The explicit computation of the effective
drift is a key result in the estimation of the probability and the mean time a single
virus or DNA molecule takes to reach a small nuclear pore [26].

2  Modeling stochastic viral movement inside a bio-
logical cell

We approximate the cell as a two dimensional geometrical domain €2, which is
here a disk of radius R and the nucleus located inside is a concentric disk of much
smaller radius 6 << R. We model the motion of an unattached DNA fragment as
a material point, so that the probability of its trapping by actin filaments or mi-
crotubules is neglected. The motion of a (DNA) molecule of mass m is described
by the overdamped limit of the Langevin equation (Smoluchowski’s limit) [21] for
the position X(¢) of the molecule at time ¢. When the particle is not bound to a
microtubule filament, its movement is described as pure Brownian with a diffusion
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constant D. When the particle hits a filament, it binds for a certain random time
and moves along with a determinist drift. We only take into account the movement
toward the nucleus, which is confound here with the MTOC (Microtubule organi-
zation center), an organelle where all microtubules converge (see figure (1.1)). For
d < |X(t)] < R, we describe the overall movement by the stochastic rule

2Dw  for X (t) free
X = (1.1)
Vg for X (t)  bound

where V' is a constant velocity, W a d-correlated standard white noise and r the X
radial coordinate, the origin of which is the center of the cell. We assume that all
filaments starting from the cell surface end on the nucleus surface. The binding time
corresponds to a chemical reaction event and we assume that it is exponentially
distributed and for simplicity we approximate it by a constant t,,.

Once a virus enters the cell membrane, its moves according to the rule (1.1),
until it hits a nuclear pore. Although nuclear pores occupy a small portion of the
nuclear surface, we only consider the virus movement until it hits the nuclear surface
D (6). In this article, our goal is to replace equation (1.1) by a steady state stochastic
equation

X = b(X) + V2Dw, (1.2)

where the drift b is radially symmetric. In a first approximation, we consider a
constant radial drift b(X) = —B 7 and compute hereafter the value of the constant
amplitude B such that the MFPT of the process (1.2) and (1.1) to the nucleus are
equal.

2.1 Modeling viral dynamics in the cytoplasm

Inside the cytosol, microtubules are distributed on the cell surface and converging
radially to the MTOC. We denote by p this distribution (see figure (1.1)). We do
not take into account in the present analysis, the effect of organelle crowding due
to the endoplasmic reticulum, the Golgi apparatus and many others. However, it is
always possible to include them indirectly by using an apparent diffusion constant.
We consider the fundamental domain  defined as the two dimensional slice of angle
© between two neighboring microtubules. We consider here that microtubules are
uniformly distributed and thus © = %”, where NN is the total number of microtubules.

Although a virus can drift along microtubules in both directions by using dynein
(resp. kinesin) motor proteins for the inward (resp. forward) movement, we only take
into account the drift toward the nucleus [52]. It is still unclear what is the precise
mechanism used by a virus to select a direction of motion. Attached to a dynein
molecule, the virus transport consists in several steps of few nanometers : the length
of each step depends on the load of the transported cargo and ATP-concentration
[53]. We neglect here the complexity of this process, assuming that ATP molecules
are abundant, uniformly distributed over the cell and is not a limiting factor. We
thus assume the bound particle moves towards the nucleus with the mean constant
velocity V. When the particle is released away from the microtubule, inside the
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(a) (b)

FIGURE 1.1 - Cell geometry. (a) Cell’s microtubules network. All microtubules
starting from the cell membrane converge to the Microtubule Organization center
(MTOC), located near the nucleus. (b) simplified cell’s microtubules network orga-
nization. The MTOC coincides with the nucleus.

domain, the process can start afresh and the particle diffuses freely. Because the
Smoluchowski limit of the Langevin equation does not account for the change in
velocity, we release the the particle at a certain distance away from the microtubule,
but at a fixed distance from the nucleus (at an angle chosen uniformly distributed),
see figure 1.2.

Because microtubules are taken uniformly distributed, we can always release the
virus inside the slice 2, between two neighboring microtubules. Thus the movement
of the virus will be studied in € : inside the cytosol, the viral movement is purely
Brownian until it hits a microtubule which is now the lateral boundary of Q (see
figure (1.2)). We assume that once a virus hits a microtubule, with probability
one, the dynamics switches from diffusion to a determinist motion with a constant
drift. A virus spends on a microtubule a time that we consider to be exponentially
distributed, since this time is the sum of escape time from deep potential wells.
We approximate the total time on a microtubule by the mean time t,,. Thus a
virus moves to a distance d,, = V't,, along microtubule, which depends only on
the characteristic of the virus-microtubule interactions. To summarize, the virus
trajectory is a succession of diffusion steps mixed with some periods of attaching
and detaching to microtubules. Thus scenario repeats until the virus hits the nucleus
surface (Figure (1.2)).
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Reflecting boundary

virus
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FIGURE 1.2 — Virus trafficking inside a cell. (a) Representation of the cell portion
between two microtubules. (b) Transport along microtubules : Two fundamental
steps are represented. A fundamental step is made of the two intermediate step
which are first the diffusion inside the domain followed by the directed motion along
the microtubule.

2.2 Computing the MFPT to reach the nucleus

We define the mean time to infection as the MFPT a virus reaches the surface
of the disk D (0) inside the domain € (see figure (1.2)).

To estimate the mean time to infection, we note that we can decompose the
overall motion as a repeated fundamental step. This step consists of the free diffusion
of the particle inside the domain followed by the motion along the microtubule. The
total time of infection 7; is then the sum of times the particle spends in each step.
Although the time on the microtubule is deterministic and equal to ¢,,, the diffusing
time is not easy to compute and depend on the initial condition. Ultimately 7;
depends on the number of times the fundamental step repeats before the particle
reaches the nucleus.

Let us now described each step : the first step starts when the virus enter the
cell at the periphery r = R = Ry (at a random angle § € [0;©]) and ends when
the virus hits either the lateral boundary or the nucleus. We now consider the first
passage time u (Ry) to the absorbing boundary and by r(Ry) the hitting position.
To account for the determinist drift, we move during a determinist time ¢,, the virus
from a distance d,, along the microtubule. In that case, the initial random position
for the next step is given by r = Ry = r(Ry) — d,,, and the total time in step 1 is
u (Ro) + tm.

We iterate the process as follow and consider in each step k the distance Ry =
r(Rg_1) — dp, from which the particle starts and the time u (Ry) + t,, it spends
inside the step. If we denote by n, the random number of steps necessary to reach
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the nucleus r = 9, the time to infection 7; is given by

ns—1

T = Z u(Ry) + ngtpm + t, (1.3)
k=0

where t, is a residual time, which is the time to reach the nucleus before a full step
is completed.

We are interested in the estimating the mean first passage MFPT 7 of 7;, given
by

ns—1

T=FE(1)=E (Z u(Rk)> + <ng >ttt <t >, (1.4)

k=0

where < ngy > is the mean number of steps and < ¢, > is the mean residual time. If
we introduce the probability density function p,, = Pr{ns = m} that the number
of step is exactly equal to m, we can write

ns—1

ZE(Z (Ry)|ns = >pm+<n5>tm+<tr>, (1.5)
k=0

To estimate the MFPT 7, we shall approximate the previous sum by using the mean
first passage time @(Ry) in each step k. To estimate u(Ry), we will solve (in the next
paragraph) the Dynkin’s equation with the following boundary conditions : inside
Q, the particle is reflected at the periphery r = R, absorbed at the nucleus 92, and
at @ = 0 and = ©. We will also estimate the mean distance dj, covered during step
k. For that purpose we will estimate the mean exit position r,,(Ry), conditioned on
the initial position r = Ry. Indeed, we will thus get d, = Ry — rp(Ri) — dyn. The
estimates of the mean distances covered for each fundamental step will ultimately
lead to an approximation of the mean number of step n =< ny > : n will be
computed such that R, > § and R,.; < 0 (where R, = r,,(R,_1) — d,,, is defined
recursively). Finally, we will obtain the following approximation for the infection
time

7
L

TR Y W(Ry)+nt,+ <t >, (1.6)
0

i

The mean residual time < ¢, > can be equal either to u(R,,) + at,,, where 0 < o < 1
if the virus binds to a microtubule in the last step and travels a distance ad,, on
the microtubule, or to the MFPT to the nuclear boundary if r,,(R,) < 6.

3 Mean First Passage Time and Exit point distri-
bution

In first approximation, under the assumptions of a sufficiently small radius § <<
R and an angle © << 1, for the computation of the MFPT and the distribution of
exit points, we neglect the nuclear area. We define the full pie wedge Q% domain of
angle O. Inside Qf, we use the boundary conditions described above. Consequently,
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the MFPT to a microtubule v = wu (r, ) of a virus starting initially at position (r, §)
is solution of the Dynkin’s equations [21]

DAu(xz) = —1forxzecQF (1.7)

u(x) = 0 forxc Nl

Ou

on

where 0QF = {6 = 0} U {# = O} and QF = {r = R}.

= 0 for x € OO

3.1 The general solution for the MFPT

In this paragraph only we reparametrize the domain by —0/2 < 6 < ©/2. By
writing equation (1.7) in polar coordinates and using the separation of variables, the
general solution of equation

u  10u 1 0%u
ot s — 1 OF 1
(87“2 + ror + r2 @92) (r.0) or (r,6) (1.8)

u(r,0) = 0for (r,0) € OQF. (1.9)
is given by [54]
( 0)—i cos | —|—ZA7’ cos (A\p0), for —0/2 <6 <0O/2(1.10)
Y EAUD cos ( " - = '

where the edge boundary is here located at position § = +0/2. The sum in the
right-hand side is the general solution of the homogeneous problem Au = 0 in QF.
The boundary conditions on the sides of the wedge impose that

T

Ap = (2n—|—1)6, (1.11)
while the reflecting condition for r = R reads
%(R,H) =0forall € [-0/2,0/2]. (1.12)

Using the uniqueness of Fourrier decomposition and the boundary condition (1.12),
we obtain that

(_1)n+1 SRQ,)\n
DOX2 (N2 —4)
By averaging formula (1.10) over an initial uniform distribution, the MFPT of the
particle to a microtubule is given by

1 [0=° r? (tan (©) 2. 16RZ Anpn
i(r) = — - 1) - 1.14
@(r) /9:0 u(r,8)do =15 ( o ) 22 DO (A2 — 4)’ (1.14)

A, = (1.13)

where A\, = (2n + 1) §. For © small, equation (1.14) can be approximated by

o (M _ 1) 160R (5)™°

ﬂ(T)Z4D =) D3 ((W/@)2—4)'

(1.15)
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3.2 Exit points distribution

To estimate the position a virus will attach preferentially to the microtubule, we
determine the distribution of exit points, when the viral particle initially started at
a radial distance from the nucleus. We recall that the probability density function
(pdf) p(r,t|re) to find a diffusing particle in a volume element dr at time t inside
the wedge Q). conditioned on the initial position r = rg is solution of the diffusion
equation

ap (I‘, t|I‘0)

oy = DAp(r,trg) for r € QF

p(r,tlrg) = 0forre o0k

ap (I‘, t|I’0)
on
where the initial condition is p (r,0|rg) = 0 (r — ro). The distribution of exit points
€ (y) is given by

= 0forreoQf,

c(y) = /Oooj(y,t) dt, (1.16)

where the flux j is defined by

iwo=-pTE0
If we denote C' (ro,r) = [, p(r,t|ro) dt then C is solution of
—DAC (rg,r) =9 (r —ro), (1.17)
and
e(y) = —D% (ro,y) fory € QF. (1.18)

Consequently, to obtain the pdf of exit points €, we use the Green function in the
wedge domain QF. By using a conformal transformation, we hereafter solve a sim-
plified case of an open wedge (i.e. without a reflecting boundary at r = R). This
computation could be compared with the general one that will be derived in the
next section.

To compute the exit points distribution, we consider the solution of equation
(1.17), obtained by the image method and a conformal transformation from the open
wedge to the upper complex half-plane. The Green function, solution of equation(1.17)
in the upper complex half-plane is given by

(1.19)
where 2§ the complex conjugate of zy. Using the conformal transformation w =

f (2) = 26 [55], that maps the interior of the wedge of opening angle © to the upper
half plane, the Green function in the wedge is given by

C(z) = 27rlDl” <Zi@__<;5;o> , (1.20)
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The flux to the line 6 is given by

D oC

g (1) = T (rew) =

1 iv (re’®)” . (ko — k)
2mr ((re?)” — ko) ((re?)” — kg)
1 —2v (re?)” rysin (v6y)

277 (rei®)? + 2 — 2 (rei®)” r¥cos (1)’

where v = §, ko = 25 = (roewo)y. Finally, the exit point distribution for # = © is
given by

(v=1) .
To (rro) sin (vly)
—— 1.21
o (7) O r2 4+ 3 + 2 (rrg)” cos (1by)’ ( )
while for # = 0 it is given by
e (r) = 2 (rro)® " sin (o) (1.22)

T oy r3¥ — 2 (rrg)” cos (vby)’

A matlab check guarantees that

/Ooo {eo (r) + €0 (r)}dr = 1. (1.23)

This simple computation is instructive and shall be compared to the full one given
in section 3.3.

3.3 Exit pdf in a Pie Wedge

To compute the exit points distribution in a pie wedge with a reflecting boun-
dary at r = R, we search for an explicit solution of the diffusion equation in polar
coordinates inside the pie wedge. We first consider the general diffusion equation

op _ Pp 10p 1%
E (x,tly) = D (ﬁ too T A (x,t|y) (1.24)
p(x,0ly) = d(x—y)

where the boundary conditions are given in (1.7). We may often use the change of
variable Vn € N* :

nm
k= 5
The initial condition is given by
2 . .
p(x,0ly) =p(r,0,0]ro, b)) = @_7"05 (r —ro) Z sin (k) sin (k6y) ,

k

for 0 < 6y (if & > 0y, 6 must be replaced by © — 6y). To compute the solution of
equation (1.24), we consider the Laplace transform p of the probability p

5 (1,0, 5|70, f) — @%‘5 (r = 7o) % sin (k0) sin (k)
25 10p  10%

=D — s . '

(87“2 + ror + r2 802) (r, 8, slro, )
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Using the separation of variables, we have

p(r,8,s|ro,0) = Z Ry (r,s) sin (kO) sin (k) ,
k

Using the change of variable, x (s) = /% and g (s) = ro,/5, we get for all k that

" 1 ! kl2
Fie(3),9) + S5 Ree (), = (14 =5 ) Bule().9)
2

Ry, (z (s), s) is a superposition of modified Bessel functions of order k : I, (z (s)) and

Ky (x (s)) for x (s) # xo (s) :
Ry (x(s),s) = Apli (2 (s)) + BBy (x (s)) ,

where Ay and By, are real constants. Since K diverges as x (s) — 0, the inter-
ior solution for (x (s) < z¢ (s)) depends only on I;. We denote by Dy the exterior
solution for(z (s) > o (s)). We use the general notation = A y = min (z,y) and
xVy =max (z,y), thus

Ry (x(s),s) = Apli (x (s) Axo (8)) Di ( (s) Vo (8)) .

To determine Dy = ay Iy + by Kj, we use the reflecting condition at x (s) =z, (s) =
R,/% and we get that

Al (w0 (3)) - (arT (2 (5)) + b (24 (5)) ) = 0.
We choose
a = ~ K (24 () and by = I (24 (s))
Thus
Ry (@ (), 5) = Aeli (2 (5) Ao (5)) (I (w4 () Ko = Ky (24 () i) (2 () V o ().

The constants Ay, are determined by integrating equation (1.25) over an infinitesimal
interval that includes ry. Using the continuity of Ry, we get

, , P
(Bk) 2(s)> 0 (s) lo(s)=20(5) = (k) (5) <o (s) |2(5)=20(5) = “GDn (5)’
that is
Ay (i (B e () K = K (ay (9) 1) = T (T (04 () K = K (24 () 1) ) (o (9))
B p
~ ©Dzxg(s)’
after some simplifications, we get
Al (e (5)) (K, — 1K) (20 (5)) = — g
©Dzxq (s)
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Using the recurrent relation between modified Bessel functions (see [31] or page 489
[561),

oo (9) = (ot = ) (0 (s) and K o (5)
k
= (_Kk:—l - ka> (zo (s)),
we get
auty o ) (1 (=i = ) = (1 - Zn) 1) (@)
2
~ ODxo(s)
that is
AT (o (9) (i + D) (10 (9) = 2

Finally, using this relation and the following Wronskian relation (page 489 [56]),

(Ie K1 + 11 Ky) (20 () = xol(s)’

we obtain that

thus
B 2
D1, (- (5))

(£ (s (5)) K = K (04 () Ie) () V o (5))

Ry (x(s),s) L. (2 (s) Ao (s))

We can now express the solution p for 6 < 6, by

A 2 Iy (2 (s) Ao () (I (a4 (5)) Ky — K (24 (5)) L) (2 (5) V 20 (5))
p(r.8.s) =55 Xk: T (2 (5)

sin (kO) sin (kby) .

The exit point distribution € (r) is given by

O (r) = — (?% (/Ooop(r,ﬁ,t) dt)) (6 =0). (1.26)

To obtain an analytical expression for expression (1.26), we use the Laplace relation :

[,(/Otf(u)du) - Fiz),
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where F' = L (f) is the Laplace transform of the function f. We have

/Otp(r,e,u)du _ (w)

i 2 : :
= L <@—D;sm(k9)sm(lﬂ90)

I (2 (s) Ao () (I (s (5)) K — K (4 (5)) 1) (2() V o (5))
Iy (s (9)) |

The computation of the integral

I(r,0,t) = (ko) (1.27)

estds

/“"" I (w () A wo () (g (2 (5)) Ki = K (w4 () 1) ( (5) V o (5))
—ioo sli (24 (s))

uses the residue theorem and the details are given in the Appendix. We have

t
I(r,0,1) :/ p(r, 0, u) du = @iD(Sl(r,G,t)—l—Sg(r,@,t)),
0

where
rk (r%k + ng)

Si(r,0,1) = Z sin (k9) sin (ko) —, g

Ji (roii) Ji (oo k)
R2a 0 k2) J? (ROz],k)7

So(r,0,t) = —2Zsm (k0) sin (kby) Ze_DO‘J Rt

and J;, are the k-order Bessel’s function and «;;, are the roots of the equation :

J;. (Ra) = 0.
Consequently, for r < rg, using (1.26), we get the following exit distribution (for
©=0):

e (r)

= 5775 (im (S1(r.60,0) + S2(r.6,1)))

0=0
Because :

thm Si(r,0,t) = Si(r,0) and tlim So(r,0,t) =0
we finally obtain that

1 _ 7,k:—1 7’% +R2k
=5 > sin (ko) <ng7~{; ), (1.28)
k

and, for r > rq, a similar computation leads to :

1 rk (T2k + Rzk)
0 _ E . 0
€ (7") = @ k SN (keo) W (129)
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These expressions can be further simplified. Indeed, we rewrite them as follows (for

r<rg):
& (r) = é S sin (k6o) (rio)k (1 + (’”—RO)%> ,

k
thus,

& (r) = é%m (; im0 (Tio)n (1 + (T—RO)QW» :

where Sm denotes the imaginary part of the expression. We obtain two geometrical
series that can be summed. We get :

ez‘ueo r v eiueo T V(r_o)Q’/
1 0 o R

e (r) = —Sm

v v Y
or 1 — eivbo (. 1 — pivto (1 T_o)2”
To To R

v
r
€0 (7’) = —Qm 61'1/90 <T0>

N @r 1 _ eilleo <L)V

T0

that is :

e (Y

After some rearrangements, we obtain the following exit point distribution on 6 = 0,
conditioned on the initial position (rg, o) :

(r) =€ (rlrg,0y) = é(

(rro)” sin (v6y)
r2 415" — 2(rro)” cos (v0o)

_ (rroR2)" sin (1/901/) > | (1.30)
(rro)™ + R — 2 (rroR?)" cos (v0y)

for 0 < r < R. Similarly, for § = ©, we obtain

o - 1
69(7'):6 (r|ro,00) = @<

(rro)” sin (1)
2 4+ 13" 4+ 2 (rrg)” cos (vby)

. (TT’ORZ)V sin (1/90) ) . (1.31>
(rro)™ 4+ R¥ + 2 (rroR2)" cos (v8y)

We notice that letting R tends to oo, we recover the expressions computed in the
open wedge case ((1.21) and (1.22)).

3.4 The Mean Exit Radius (MER)

To determine the mean exit distribution radius € (r|r) for a viral particle starting
initially at position rg, 6y where 6y is uniformly distributed between 0 and O, we
consider € (r|rg, ) = €° (r|ro, 0) + € (r|ro, ) and estimate the integral

1 ©
€(r|ro) = 6/@ _Oe(r|r0,00)d00. (1.32)
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Exit radius distribution
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FIGURE 1.3 — Mean exit points distribution. The theoretical distribution (da-
shed line) is tested against the empirical one (solid line) obtained by running a
simulation of 20 000 Brownian particles, starting on the wedge bisectrix (6 = % at
ro = R = 100 for © = %). Because the starting point is located on the bisectrix,
€’ (z) = €® (x), and thus the analytical curve is given by € (r) = € (r) + €® (r) =

o (e, (r)”

o <r2" e eyl B In that case, the maximum of the function € (r) is achie-
0

1 v—1
ved at r = 7"065[”<v+1).

Integrating expressions ((1.30) and (1.31)) we get :

We define the mean exit point as r,, (r9) = E (r|r¢) conditioned on the initial radius
ro. Thus,

ron (1) = E (rlrg) = /0 v (rlro) dr. (1.33)
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n

Using the expansion In (1 +z) =3 ., (=1)
integration that

for x < 1, we obtain by a direct

1

2 — 1
1) 1 (2n+1)2(%)2

8 oo
rm (ro) = F(Tonz:o(zn

4| =

0 g\ @D E o
- R () o _ ) (1.34)
= (2n+1) (((2n +1)z) - 1)

using the expansion in the first part,

= ; = pooo (ﬁ)% (1.35)

@nt+1)%(5)°

and the approximation ©® << 1, we obtain using the value of the Riemann {—function,
C(2) == and ¢ (4) = =, ry < R, that

6 90°

Tm (T0) 2 To <1 + ?—22) - i—}j (%)WG (77/7(;/% (1.36)

For © small, the second term in the right-hand side of (1.36) is exponentially small.

4 Approximation of a virus motion by an effective
Markovian stochastic equation

We replace the successive steps of viral dynamics with an effective stochastic
equation containing a constant steady state drift.

4.1 Methodology

Virus motion described in paragraph (2.2) consists of a succession of drift and
diffusing periods. We start with the stochastic equation

X = —Bﬁ +v2Dw, (1.37)
r
where 7 is the radial component of X , B is the amplitude of the drift. The MFPT

of the process (1.37) to the nucleus located r = §, when the initial position is located
on the cell surface » = R is solution of

d’t  1dt dt
D<W+;$> (T,Q)—B% (7’70) = —1 fOI‘ (T,@) GQ
t(r,0) = 0forr=29
dt

%(T',@) = 0forr=R.
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A similar equation can be written in the domain Q with reflective boundary condi-
tions of the wedge. Both processes in the full domain or in 2 lead to the same MFPT.
The solution ¢(B,r) is given by

Br—c— [ 0 g 1.38
t( 77')* _/r (LT”) v, ( )

5 c R Rue—a(u—v)d p .

For a fixed radius R, the derivative of the function ¢ (B, R) with respect to B is
strictly negative, which shows that B — ¢ (B, R) is strictly decreasing. To determine
the value of the amplitude B, we equal the mean time ¢ (B, R) with the MFPT to
reach the nucleus within the iterative procedure as described in paragraph (2.2) : at
time zero, the virus starts at a position »r = R = Ry and reaches the edge boundary
in a mean time @ (Ry) and at a mean position r,, (Ry). The viral particle is then
transported toward the nucleus over a distance d,, during a time t,,. Either the
particle reaches the nucleus before time t,, and then the algorithm is terminated or
in a second step, it starts at a position Ry = r,, (Ro) — d,,,. The process iterates until
the particle reaches the nucleus. We consider the mean number of fundamental steps
(diffusion step and directed motion along a MT step) the virus needs to reach the
nucleus is equal to n > 0. The mean time to reach the nucleus computed by equation
(1.38) has thus to be equal to the mean time 7 = >.77) a(Ry) 4+ ntpt < t, > of
the iterative trajectory. In a first approximation, we neglect the mean residual time
< t, > and we thus get the equality :

where o« = % and

n—1
t(B,R)=17=) u(Rg)+nty (1.40)
k=0
Rk+1 =Tm (Rk) - dm (1.41)
Ry=R. (1.42)

For a fix radius R, equation (1.40) has a unique solution B, which can be found in
practice by any standard numerical method.

Remark

The MFPT of a particle where the trajectory consists of alternating drift (tra-
veling along microtubules) and diffusion periods can either be higher or lower than
the MFPT of a pure Brownian particle. Indeed when B < 0, the drift effect is less
efficient than pure diffusion. For example, for © = £, R = 100um, § = % = 25um,
a large diffusion constant D = 10um?s~! with the dynamical parameters t,, = 1s

and d,, = 1um, leads to a negative mean drift

B~ —0.14pms ™. (1.43)

On the other hand, for a small diffusion constant D = 1um?2s~!, an efficient mi-

crotubules transport obtained for ¢,, = 1s and d,, = 5um leads to a mean positive
drift

B~ 0.13ums™". (1.44)
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4.2 Explicit expression of the drift in the limit of © << 1

When the number of microtubules is large enough, the condition © << 1 is
satisfied. Moreover, because a virus entering a cell surface has a determinist motion,
we can assume that the initial position satisfies Ry < R so that we can neglect
any boundary effects and use the open wedge approximation which consists of using
formula (1.36) without the boundary layer term. Actually, this approximation is
not that restrictive because after the first iteration process (movement along the
microtubule followed by the particle release), the boundary layer term is negligible
compared to the other term.

To obtain an explicit expression for the amplitude B, we consider the successive
approximations

(__)2
m (Ro) = Ry (1 + E) , (1.45)
and
Ry = Ro;
R, ~ Ry <1+?—22) dn;
Ry ~ Ry (1+?—22)2—dm (1+ (1+?—22)>,
mox n(109) - (S (+5))
k=0
that is
R; ~ (Ro — %Ci’") (1 + ?—22) + %i’". (1.46)

Thus the particle reaches the nucleus after n iteration steps which approximatively

satisfies R, = 0,
1_ 862
In 12dm
Rg©2

~

+o(1). (1.47)

If T,, denotes the mean time a viral particle takes to reach the nucleus, then using
formula (1.15), we obtain

T, ~nt - 2 1.4
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that is

tan(©)
(6 1)

4D

12d,,\ 2 12d,, 12d,, 02\’
(( &) 2 () (m- 1) 1+ %)
12d,,\ 2 02\ *
+ (RO— @2) (1+ﬁ) ),
an(©
(2

4D
12d,,\* [ 24d,, a1 (1+%)
n 02 -\ o2 Ro — 0?2 o2
2\ 21
(R 12dm)2 1- <1+ %) )
0 - .

2 2 2
© 1-(1+92)
For © << 1, a Taylor expansion gives that
Ry—9 tm (Ro — 0) Ro+0Y\ 5
e (B0, e () Rt
(Ro —6) (RS + Rod + 6°)
72D dpm

t ~ nt,+

—_

n—

~
I
o

T, ~ nt,+

(dm+3(Ro+5)+2 >®4+o(@4).

Ro—6
Tn

In small diffusion limit D << 1,0 << 1, the velocity is B ~
we obtain for Ry ~ R, a second order approximation

and consequently

dm
B~ - ;m e , (1.49)
1+ (1+ﬁ> 5 +0(eY)

where d,,, t,, are the mean distance and the mean time a virus stays on the micro-
tubule, R (resp. d) is the radius of the cell (resp. nucleus) and © = 2% where N is

N’
the total number of microtubules.

4.3 Justification of the MFPT-criteria.

To justify the use of the MFPT-criteria to estimate the steady state drift, we
run numerical simulations of 1,000 viruses inside a two dimensional domain Q (§ <
r < R) with intermittent dynamics, alternating between epochs of free diffusion and
directed motion along microtubules and compare the steady state distribution with
the one obtained by solving the Fokker-Planck equation for viruses whose trajectories
are described by the effective stochastic equation (1.2) with our computed constant
drift

dm
b(X) = — ’me - OQHZ_BW'
1+ (1+22) &
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We imposed reflecting boundary conditions at the nuclear and the external mem-
brane. The theoretical normalized steady state distribution p satisfies

DAp—V.bp] = 0inQ
9 gy =9 (5

= = 0.
dr dr
and the solution p is given by
6_% e %T
p(r) = - = - (L.51)
faR e~ B 2mrdr 271'% (56_% — Re™ B+ % (e_% — 6_%))

The result of both distributions is presented in figure 1.4 where we can observe that
both curves match very nicely. This result shows that the criteria we have used is
at least enough to recover the distribution. For the simulations, we consider the
directed run of the virus along a MT (loaded by dynein) lasts ¢,, = 1s and covers
a mean distance d,, = 0.7um [57]. The diffusion constant is D = 1.3um?*s™! as
observed for the Adeno Associated Virus [14]. The two curves in figure 1.4 fit very

Steady State Distributions
0.012 4

0.010 -
0.008 -
0.006 -
0.004 -

0.002 A

5 10 15 20
Radius (um)

FIGURE 1.4 - Steady State distributions. We show the empirical steady state dis-
tribution for 1,000 viral trajectories with an intermittent dynamic (solid line). The
theoretical distribution of viruses whose trajectories are described by the stochastic
equation (1.2) is given in dashed line. Geometrical parameters are : R = 20um,
0 = 5um and © = 7.

nicely except at the neighborhood of the nuclear membrane, where the simulation of
the empirical distribution is plagued with a possible boundary layer. Another source
of discrepancy comes from the difference of behavior of viruses far and close to the
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nucleus : viruses far from the nucleus do not bind as often as those located in its
neighborhood. Consequently, a constant effective drift cannot account for the radial
geometry near the nucleus. A theory for radius dependent effective is derived in the
chapter 2. Interestingly, we show in that chapter that the ©® <« 1 approximation is

still very good up to © = £.

5 Conclusion

In the limit of a cell containing an excess of microtubules, we have presented here
a model to describe the motion of biological particles such as viruses, vesicles and
many others moving inside the cell cytoplasm by a complex combination of Brow-
nian motion and determinist drift. Our procedure consists mainly in approximating
an alternative switching mode between diffusion and determinist drift epochs by a
steady state stochastic equation. This procedure consists of estimating the ampli-
tude of the effective drift and is based on the criteria that the MFPTs to the nucleus,
computed in both cases are equal. In that case, this amplitude account for the di-
rected transport along microtubules, the cell geometry and the binding constants.
The model has however several limitations. First, we do not take into account di-
rectly the backward movement of the virus along the microtubules [58, 59|, which
can affect the mean time and the amplitude of the drift. Second, the present com-
putations are given for two dimensional cell geometry only. It can still be applied to
many @n vitro culture cells, however it is not clear how to generalize our approach
to a three dimensional cell geometry. For example, to study the trafficking inside
cylindrical axons or dendrites of neuronal cells, a different approach should include
this geometrical features. However despite these real difficulties, the present model
may be used to analyze plasmid transport in an host cell, at the molecular level,
which is one of the fundamental limitation of gene delivery [60, 61, 62, 63].

Appendix

In this appendix, we provide an explicit computation of integral (1.28) using the
method of the residues. This method was previously used in a similar context in
([56] p 386). We denote by (p;?)po the poles of the function

I (2 (5) Ao () (7, (24 (5)) Ko = K (2 (9)) 1) (& (9) Vo 5))
Iy (@5 (9)) |

where (z (s) = 7/% , To (s) = 104/3 and x (s) = R/3). The associated residues
are (rf)P o- We now compute the residues explicitly.

d:s5—

To identify the poles, we recall the relation between the k-order Bessel’s function

Ji; (that is true for z such that —7 < arg (z) < §) and the modified Bessel functions
I, (p 375 [31]) :

I (z) = e 2k g, (ze%m) : (1.52)

All roots a;;, of the equations

Ji (Ra) =0,
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are real, simple and strictly positive (p 370 [31]) because k is real and

k§a17k<a27k...

Thus,
I, (—iRaj;) = 0.
Finally the poles of ® are simple given by pf = 0 and Vj > 1, pj = —Da3,.
Consequently the associated residues are given for each k for all 5 > 0 by
7“;»“ = shj?’f (s — pf) D(s). (1.53)

Then using the residues, integral (1.28) is given by

1 2
I(r,0,t)= D Zsm (k) sin (kby) (2mi Z b= = oD Z (k) sin (kby) Z K
!

3>0 k 3>0

We now compute the residues 7¥. The residue 7§ is associated with the pole pf = 0
and given by

= lim s®(s)

s—0
Using the following identities on the modified Bessel functions (p 489 [56])

I (2) = Iy (2) + Slk (2) and K, (2) = —Kj_q1 (2) — gKk (2),

substituting the derivatives [ ,; and K,; in the expression of ®, we get
k

PR CIOLTI0)
0 (L + 550 (24(9))

( (o ) e 0 )

+ ((Kk—l + :L‘+k(S)Kk) (24 (5)) Ik) > (x (s) Vo (s)),

Taking into account the dominant terms only, we get

e () Ao () (B (s (5)) K Ko (4 () T) (2 5) V 0 (5))
0T NERE) |

To further compute this limit, we use the Taylor expansions of I and K} (p 375
[31]) expressed in terms of the I' function :

L(z) ~ % and Ky (2) ~ 3T (K (12)_ |
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For r < ry, we get

Finally, using the relation I' (k + 1) = kI" (k), and the expressions of z(s), x¢(s) and
x4 (s) we get

K rk (r(z]k + RQk)
Ty oI

The computation of the other residues (r’?

])j>1, is slightly different

rf = lim (s — p;“) d(s),

sap;?

where p¥ = —Da? . Using the Wronskian relation (p 489 [56]) :

I (2) K} (2) = K () T (2) = —

we now substitute
1 ’
: =5+ Ky (2) I ()
K, (z)=—=% .

in the expression of ®, we get

1

(o gty e B0 (i () Ko - ((—K) (e () 1) (o (5)

k .

r? = lim

U s I (w4 (s))
Because

we obtain the expression for the residues :

e @I (@ () I (w0 (7)) (o (=)
ooy L () wy () sk T (2 (5))

Finally, since

N G ) A 25 C RS ) I
AT ) T TR ST o) LG (D) R (s 0D)

we obtain

I (e (0) I (o (F) 2/ D)
P I (o () 24 () BRI (v ()
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To simplify this expression, we use that I satisfies the differential equation (p 374

[31]) :
K@+ e - (145 ) e —o
thus for z =z, (pf) :

k 2 2
p p"R* 4+ Dk
I, (x4 (1)) =~ SR I, (a4 (9))
J

we get
ko 2Dent L (@ () I (20 (p)))
PORp DR (e ()

and finally, using (1.52), we get

rk = 2e Pt Ty (ry) Ty (rociie)
J —R%zik + k2 J? (Ravj)

Integral (1.28) is given by
2 , _ L 2
I(r.0,1) = g5 Zk: sin (k6) sin (k6o) ; i =gp (S1(n0.) + S(r,6,1)) . (1.54)

where

k 2k RQk:
Si(r,6.t) = S sin (kf) sin (k6o) (5" + B)

2k R%*rk 7
k
; ; - —Dao? Jk (TOZ'k) Jk (?"QOzjk)
So(r,0,t) = =2 sin(kf)sin (kb)Y e Pt I, k)
Xk: JZ—; (R, — k?) J§ (Royx)
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Quantifying intermittent transport in
cell cytoplasm, Phys. Rev. E 77
(2008)

1 Introduction

Cell transport, which may involve vesicles or proteins is essential for cellular
function and homeostasis. In general free diffusion in the cell cytoplasm is not effi-
cient and many particles such as large viruses cannot pass the crowded cytoplasm [5]
without hijacking the complex cellular transport machinery and use molecular mo-
tors, such as dyneins, to travel along microtubules (MTs) toward the nucleus. Both
vesicular and viral motions alternate intermittently between periods of free diffu-
sion and directed motion along MTs [64]. Such viral trajectories have been recently
monitored by using new imaging techniques in vivo |15, 14].

The switch nature of the motion, imposes a complex behavior of the particle tra-
jectories which depends on the number and distribution of MTs, the rate of binding
and unbinding and the diffusion constant of the free particle. Some physical proper-
ties, such as the mean velocity of trajectories has been obtained for the motion in
domain made of parallel strips, in which a random particle has a deterministic mo-
tion on the stripes and pure diffusion outside [24]. In case of a population of motors,
at equilibrium between free diffusion and bound on MTs, the motor distribution has
been studied in cylindrical and radial geometries in [65, 25| ; the authors estimate
the forward binding rate using Brownian simulations in [25] and experimentally in
[65].

We consider here a particle x(¢), which can be described using the stochastic
rule :

V2Ddw  for x(t) free
dx = (2.1)
V  for x(t) bound

where w is a standard Brownian motion, D the diffusion constant and V the velocity
of the directed motion along MTs.

In this communication, we compute the mean first passage time of a single par-
ticle to a population of MTs. We thus provide an analytical expression of the forward
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binding rate of a motor to MTs in both radial and cylindrical geometries. Using the
analytical expression of the forward binding rate, we propose a coarse-grained des-
cription of a switch dynamical motion of a particle, which can either be a virus, a
vesicle or a molecular motor. This description, which is the main result of our paper,
is a fundamental step to estimate the probability and the mean time to arrive at
a small target. Moreover, using this description, we obtain the steady state distri-
bution of virus in MTs network without resorting to the assumption of a two-state
model [65, 66].

We thus compute an effective steady state drift b(x) such that the particle motion
(2.1) can be coarse-grained by the stochastic equation :

dx = b(x)dt + vV2Ddw. (2.2)

Using results derived in [26], equation (2.2) and the degradation activity in the cyto-
plasm due to protease or lysosome, we obtain asymptotic estimates of the probability
and the mean time for a virus to reach a nuclear pore. The problem of finding a
small target is ubiquitous in cellular biology and recent theoretical studies [30, 67]
suggest that the geometrical organization of the medium play a fundamental role in
this search process.

2 Mathematical Modeling

We represent the cell cytoplasm as a bounded domain €2, whose boundary 0f2
consists of the external membrane 0€2.,; and the nuclear envelope, both of which
form a reflecting boundary dN,. for the trajectories of (2.2), except for small nuclear
pores ON,, where they are absorbed. The ratio of boundary surface areas satisfies
A |ON,|

1291
steady state killing rate k(x) for the trajectories of (2.2), so the survival probability
density function (SPDF) is the solution of the Fokker-Planck equation [68|

< 1. We model the virus degradation activity in the cell cytoplasm as a

with the boundary conditions :
p(x,t) =0 on ON, and J(x,t).ny = 0 on ON, U 0Qery (2.3)

where ny denotes the normal derivative at a boundary point x. The flux density
vector J(x,1) is defined as

J(x,t) = —=DVp(x,t) + b(x)p(x, t). (2.4)

The probability Py and the mean time 7y that a trajectory of (2.2) reaches ON,
are given by the small hole theory for two-dimensional domains € and drifts b (x) =
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—Vo (), as |26]
( 1 2 (x)
— e~ D dSy
b 99 Jog
N 1 )
n(:) /e—%")k(x)dx+—1 e~ 5 ds
D Jq ‘89, o0 *
(2.5)
l l X
_n(g) /e_q)J(D)dx
™ = (1) Dﬂ. Q
In(= / 2(x) 1 2(x) ’
—< | e D k(x)dx + —— e D dSy
S A

Hereafter we derive explicitly the steady state drift b(x) as a function of some
geometrical and dynamical parameters of the cell (number of MTs) and the virus
(binding and unbinding rates, the mean velocity V of the directed motion and the
diffusion constant D).

3 General Methodology

To derive an expression for b(x), we consider the motion of a virus between the
moment it enters the cell at the outer membrane and the moment it reaches the
absorbing boundary 0N,. Its motion alternates between free diffusion, for a random
time 7, until it hits a M'T and binds. It continues in a directed motion along the MT
for a mean time t,,, and a mean distance d,,, = ||V|| ¢,,, until it is released and resumes
free diffusion. The steady state drift is chosen to be constant for a sufficiently small
step, such that the mean time 7+ ¢, to the first release at a point x¢ is the same as
that predicted by (2.2) (see FIG. 2.1). This approach leads to explicit expressions
for the steady state drift for two-dimensional radial and cylindrical geometries.

4 The steady state drift for a two-dimensional ra-
dial cell

We consider a two-dimensional cell cytoplasm which is an annulus €2 of outer
radius R and inner radius § (nuclear surface) with N MTs radially uniformly dis-
tributed. They irradiate from the nucleus to the external membrane and the angle
between two neighboring ones is © = 27/N. The two-dimensional approximation
applies for culture cells which are flat [48] due to the adhesion to the substrate.
In that case the thickness can be neglected in the computation. Before reaching a
small nuclear pore, a virus has an intermittent dynamics, alternating between diffu-
sing and bound periods (see FIG. 2.2). Because the MTs are uniformly distributed,
we consider the fundamental domain Q defined as the two-dimensional slice of angle
© between two neighboring ones. In Q, the fundamental step described above is as
follows : the virus starts at a radius ry with an angle uniformly distributed in [0; O],
it binds to a MT at a time 7(ry) and at a radius 7(r). On the MT, it has a radially
directed movement towards the nucleus during a mean time ¢,, and over a distance
dy, = ||V||tm. Finally, the virus is released with a ©-uniformly distributed angle at a
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Brownian motion

Brownian /
motion

with a Drift b(x,)

FIGURE 2.1 — The fundamental step is represented with a dotted line; a virus starts at a
position xq, diffuses freely, binds to a MT over a distance d,,, and is then released at a final
position x¢. The solid line represents a trajectory generated by the steady state equation
(2.2). In the parenthesis, we point out the mean times for each portion of trajectories.

Virus
trajectory

brownian
motion

Nuclear
pores

Directed
movement

Cytoplasm
(Q)

Microtubules

FIGURE 2.2 — Two dimensional radial cell with radially equidistributed MTs. We show a
virus trajectory alternating between bound and diffusive periods in cytoplasm.

76 4. The steady state drift for a two-dimensional radial cell



Chapitre 2. Quantifying intermittent transport in cell cytoplasm, Phys. Rev. E 77 (2008)

Initial radius

Pure Brownian
diffusion

Final radius
Directed motion

FIGURE 2.3 — A fundamental step in Q. The virus starts at a radius ro, with an angle
uniformly distributed in [0; ©], it diffuses freely during a time 7(r¢) until it binds to a MT
at a mean radius 7(rp) ; it has then a directed motion over a distance d,, = ||V||t;, before
being released randomly at a final radius ry. Mean times of each piece of the fundamental
step are written inside parenthesis.

final radius ry = 7(ro) — ||V||[tm (see FIG. 2.3). In most eukaryotic cell large asters,
there are from 600 to 1000 MTs [65]. We can estimate the average number N of MTs
per cell cross section as follow : for a cell thickness h ~ 9um, [65], an interaction
range v ~ 50nm between the MTs and the molecular motors [69], and for the AAV
diameter d = 30nm [14], we obtain for a radial MT organization in a thin cylindrical
cell, that the range of N is between 600(2y + d)/h and 1000(2y + d)/h, that is 9 to
15. We are thus in a regime where © << 1. For ry < R, by neglecting the reflecting
external boundary at r = R, Q becomes an open wedge and thus using the standard
methods from [54] (see also chapter 1), we obtain

o? Ch
T(ro) ~ rgﬁ and 7(rg) =~ ro(1 + E) (2.6)

In radial geometry, b(x) = b(r)H—:H and the MFPT u(rg) of a virus starting at 7
and ending at position rs, described by equation (2.2) satisfies [21] :

DAv —b(ro)Vu = —1 (2.7)
du
dr

where we approximated b(r) by b(rg). The solution of equation (2.7) is

o R ue= b(go)(u—v)
-  —du|dv. 2.8
)= | (/ L ——du] dv 2.

For D << 1, using the Laplace method,

(R) =0 and u(ry) =0,

b(rp)

R ye=—p (u—v) 1
—_—du ™ ) 2.9
/v Dv Y b(ro) (2.9)
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To —T f
b(ro)
the MFPT u(rg) from 7o to r; computed from equation (2.2) with the one obtained

from an intermittent dynamic : 7(rg) + t,,. Consequently, we get :

Thus, in first approximation, u(rq) ~ . To obtain the value b(rg), we equal

brg) = —0 "t _ G 0%y (2.10)
T = = . .
O 1 (ro) + tm + 7‘3—32

5 Tests against Brownian simulations

We impose reflecting boundaries at the external membrane » = R and we tested
the theoretical steady state distribution against the one obtained by running em-
pirical intermittent Brownian trajectories in the pie wedge domain. For a potential
field, the steady state distribution satisfies DAp — V[bp] = 0 in Q with reflecting
boundary condition J(x,t).n, = 0 on 92. The distribution p in a two-dimensional
radial geometry is :

_2(r)
[ D

B e ’
e~ D 2mrdr
0

which should be compared to the distribution of [65]. The potential ® of b = —V®
is obtained by integrating equation (2.10) with respect to r,

_ dnV/12Dt,, arctan Or
.0 V12Dt,,

D
5 In (12Dtm + T2@2)

p(r) = (2.11)

o(r) (2.12)

In FIG. 2.4, we plotted the steady state distribution given in (2.11) against the
distribution obtained by the intermittent empirical equation (2.1). The parameters
are chosen such that the viruses move towards the nucleus (observed in vitro, loaded
dynein moves during 1s over a distance of 0.7um [57]), we thus take ¢,, = 1s and
d,, = 0.7um; furthermore, the diffusion constant is D = 1.3um?s™! as observed
for the Associated-Adeno-Virus [14|. The nice agreement of both curves, which is
the central result of this communication, confirms that our coarse grained method
accounts well for the switch system (2.1).

6 Computation of Py and 7y

We derive now asymptotic expressions in the small diffusion limit D << 1,
for the probability Py and the mean time 7y a virus arrives at a small nuclear
pore. We apply Laplace’s method in formulas (2.5) for a radial geometry. When
the degradation rate k(r) is taken constant, equal to ky in the neighborhood of the
nucleus r = § and when 12d,, > r©?, b(r) > 0 so that ® reaches its minimum at
r =9, we get

b(9)

P — dore = In (%) 20
N I (D) 20k + b(0) 0N T Tn (X) 20k + b(0)
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Steady State
Distribution

1 3 5 7 9 11 13 15 17 19
Radius (um)

FIGURE 2.4 — Steady state distributions. Dashed line : virus distribution (2.11) with
the effective drift b(r) (2.10); solid line : Empirical steady state distribution obtained by
running 10, 000 intermittent Brownian trajectories. The cell radius is R = 20um and © = &.

A Taylor expansion for © < 1 gives that

o K6 (dwd + Dt)
Py = 1-— 2.1
N A + K ( 12Dt dy, (dpy + ) © ) (2.13)
K 8 (dm6 + Dtp)
~ —— (1 2.14
™ k(dm+K)< 2, (dm+K)@) (2.14)

where K = 2kodt,,, In (1).
We can now propose the following predictions : because nuclear pores occupy
a fraction € = 2% [70] of the nucleus surface (radius 6 = 8um) and the measured

degradation rate for plasmids [32] is k = ﬁsil, we obtain from formula 2.13-2.14
that
Py =~ 94.3%, v ~ 205s. (2.15)

We conclude that the infection efficiency is very high, while the mean time to reach
a nuclear pore is of the order of 3 minutes. It is interesting to compare this time
with the 15 minutes reported in [14], which accounts for all the viral infection steps
from the entry to the final nuclear import. This difference between the two times
indicates that the phase where the virus is inside an early endosome (EE) may last
10 minutes. Indeed, the endosomal phase ends once the EE has matured into a late
endosome (LE) [1], which lasts approximately 10 minutes [2]. To finish, we shall note
that a free diffusing virus would reach a nuclear pore in about 15 minutes [30].

The cylindrical geometry. Many transports mechanisms such as viral (herpes virus
[23]) and vesicular occur in long axons or dendrites, which can be approximated
as thin cylinders (radius R and length L). To derive a quantitative analysis of viral
infection in that case, we follow the method described above and compute the steady

6. Computation of Py and 7n 79



Chapitre 2. Quantifying intermittent transport in cell cytoplasm, Phys. Rev. E 77 (2008)

Microtubules
(radius =€)

FIGURE 2.5 — Dendrite cross-section. The N MTs are thin cylinders uniformly distributed
inside the dendrite.

state drift that accounts for the directed motion along MTs. We model the N MTs
parallel to the dendrite principal axis as cylinders (radius ¢ << R, Length L).
The cross-section €2 of the dendrite is shown in FIG. 2.5. Due to the cylindrical
symmetry, for any position x, the steady state drift b(x) is equal to Bz where B is
a constant and z the principal axis unit vector along the dendrite. In a small diffusion
approximation, the leading order term of B is equal to the effective velocity [24, 25] :

B = —™— where t,, is the mean time the virus binds to a MT, d,,, = ||V||t, the
T

t
mean distance of a run and 7 the MFPT to a MT. To derive an expression for 7,

we consider the cross-section €2 and impose reflecting boundary condition at the
external membrane of the dendrite (r = R) and absorbing ones at the MTs surfaces.
In long time approximation, for a MTs radius € < 1, 7 is asymptotically equal
to 1/(AD) where X is the first eigenvalue of the Laplace operator in {2 with the
boundaries conditions described above ([21] p.175). The leading order term of A as

2
a function of € is [71] A = W, where |Q| = 7R?. Thus, the MFPT to a MT is
n =3
_ LRG| the steady state drift amplitude B is given b
T—E—W,an € steady State drit amplitude 1S given by
dpm, 2N Dd,,

(2.16)

b7 T aNDL, - RIn (1)

We conclude that in the limit ¢, < 7, the effective velocity is proportional to the

number of MTs : B =~ NLdn;

, as already observed in [65].

7 Conclusion

Intermittent dynamics with alternative periods of free diffusion and directed
motion along MTs characterizes many cellular transports. We have developed a
model to estimate a steady state drift such that the intermittent dynamic can be
described by an over-damped limit of the Langevin equation. Our method gives
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explicit results in two-dimensional radial cell and in a cylindrical dendrite or axon.
The steady state description of the movement enables us to estimate the probability
a virus reaches alive a small nuclear pore and its mean time. Because viruses are
very efficient DNA carriers, understanding and quantifying their movement in the
cell cytoplasm would be very helpful for designing synthetic vectors [72]. In a future
work, it would be interesting to derive steady state drifts for three dimensional
geometries.
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Chapitre 3

Mean time and probability to reach
a structured target

1 Introduction.

Cell communication is essential for cellular functions and homeostasis. Diffusive
particles such as vesicles or RNA granules |73] have to reach specific targets to
deliver their payload or trigger protein synthesis. In some cases, to efficiently pass
through the crowded cytoplasm, large particles are intermittently transported on the
cytoskeleton by molecular motors such as dyneins that travel along microtubules
(MTs) toward the nucleus. In particular, many DNA viruses hijack the cellular
transport machinery to reach a nuclear pore and deliver their genetic material [5, 64].
Recently new imaging techniques have allowed to monitor such viral intermittent
trajectories in vivo |15, 14]. Many of these particles (viruses, granules ...) can be
trapped in the crowded cytoplasm or degraded through the ubiquitin-proteasome
machinery before reaching their goal. To understand quantitatively the cell biology
at a molecular level |28, 74], derive kinetics of chemical reactions that involve a small
number of components |75] or quantify early steps of viral infection (see chapter 4), it
is important to have precise asymptotics for the conditioned mean first passage time
(MFPT) 7, and the probability P, a diffusive particle, that can intermittently travel
along MTs, reaches a specific target among n. The complex intermittent trajectories
of a particle x(¢) can be described using the stochastic rule

V2Ddw  for x(t) free
dx = (3.1)
V  for x(t) bound

where w is a standard Brownian motion, D the diffusion constant and V the velocity
of the directed motion along MTs. To pursue the analysis, we coarse grain this
complex behavior in a Langevin description of trajectories

dx = b(x)dt + vV2Ddw, (3.2)

where the drift b(x) depends on the cell geometry, the number and distribution
of MTs and the rates of binding and unbinding of the free particle to MTs (see
chapter 1 and 2). We consider the particles have to reach one over n small partially
absorbing disks (radius €) located on the cell (0€2,+) or nucleus membrane (93),
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such as nuclear pores. We thus represent the cell cytoplasm as a three-dimensional
bounded domain 2, whose boundary 992 = 0., | 0% is reflecting except for n
small partially absorbing windows 9N, where particles can be absorbed (see FIG.3.1
(left)). We model the degradation activity in the cell cytoplasm as a steady state
killing rate k(x) for the trajectories of (3.2), so the survival probability density
function (SPDF) is the solution of the Fokker-Planck equation [68|

@:DAp—V-bp—kp

ot
p (X7 0) = Di (X)
with the boundary conditions :

J(x,t).nx = kp(x,t) on ON, and J(x,t).nx = 0 on 9 — IN, (3.3)

where ny denotes the normal derivative at a boundary point x and k is a negative
real constant. The flux density vector J(x,t) is defined as

J(x,t) = —DVp(x,t) + b(x)p(x,1). (3.4)
If p(x) = [;° p(x,t)dt and q(x) = [ tp(x, t)dt the probability P, and the conditio-
ned MFPT T, the part1cle reaches ON, before being killed are [26] :
P, = 1- / k(x)p(x)dx, (3.5)
Q
Jop(x)dx — [ k(x)q(x)dx
1— [ k(x)p(x)dx

For pure absorbing disks (k — 00), when the drift b derives from a potential ®
(b(x) = =V (x)), asymptotics in € of P, and 7, have been derived in [26]

(3.6)

Tn

( e %
Py = 1 26 P9
mfg ]{7( )dX+€ D
(3.7)
2(x)
o o Jo € 7 dx
n 200 _ g
\ 4Dne fﬂ k(x>dx+€ D

where @ is the constant value of the radial potential ®(x) on the membrane of
the centered nucleus. In the chapter 4, we test these asymptotic expressions against
Brownian simulations for a single hole(n = 1). These formulas do not account for
the possible interactions between the small absorbing pores. Because

lim T, =0,
n—oo,ne2<<1

when the number of pores becomes too large, these expressions are no more valid
and a correction term accounting for the holes interactions is needed. Recent studies
have begun to quantify the interactions between the absorbing windows [27, 28§].
When the n > 1 windows are uniformly distributed over a small structure X, the
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Small partially
absorbing windows

Small partially Trajectory
absorbing windows (diffusion+drift)
N

FIGURE 3.1 — Scheme of the general 3-dimensional domain Q (left-hand side) : Langevin
trajectories, solutions of (3.2), can be killed or absorbed at the small windows located
on 0%. On the right-hand side, the simplified spherical cell (radius R) with a spherical
centered nucleus (radius §) is represented.

leading order term of the narrow escape time 7, of a pure diffusive particle in the

limit % < 1 has been derived in [29] with electrostatic considerations :
e (1 flo,s) D flo,K)
== — 1 , 3.8
B D \ Csx * 4ne K|0X] * o (3:8)
where Cy is the capacitance of the conducting surface 9% and o = ng\ is the
fraction of the structure covered by the partially absorbing disks. For example, if
the structure is a sphere of radius r, we have Cy = 4nr (and Cx = 27r for a

hemispherical spine located on the membrane). We can approximate [29]

4D 1 -0 — f(o)
flo, k) ~ f(o) + J— AD (3.9)
I+—
TER
where f(o) has been successively approached by
1 [76]
1—o |77
foy=4 too (310
F(o) 143802 78]
By neglecting the geometrical interactions between the holes (C—lE = 0), for a small

coverage (0 < 1) and perfectly absorbing disks (k — 00), the mean time expression
(3.8) reduces to (3.7) for pure diffusive particles (b = 0) with no killing activity
(k=0).

In this chapter, accounting for the interactions between the partially absorbing
windows, we compute the probability P, and the conditioned MFPT 7, a diffusive
particle that can be degraded (k # 0) and actively transported (b # 0) reaches a
window. P, and 7, are solutions of a simple linear system and when the small holes
concentrate on a structure X such as the nucleus, we provide concise leading order
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=l
12
small coverage 0 < 1. In particular, these new results apply to viruses (b # 0) and
non-viral gene vectors (pure diffusive b = 0) that have to reach one over the 2,000
nuclear pores |70] that cover the nucleus to deliver their genetic material before

being trapped or degraded through the ubiquitin-proteasome machinery.

asymptotics in the limit < 1. These asymptotics generalizes formula (3.8) for a

2 Asymptotic derivations of P, and 7,

Because the 2,000 nuclear pores of radius 25nm occupy only 2% of the nuclear
surface (radius § = 5um (Chinese hamster ovary cells [70])), we neglect the fraction
o of 9% that is covered by the partially absorbing windows. Without any loss of
generality, we consider the n partially absorbing windows 02; of identical radius e
are centered at positions (x;);_, on 9X. The SPDF is thus solution of [6§]

9 DAp— - bp— kp

p (X7 0) =Di (X)

with the boundary conditions :
J(x,t).nx = kp(x,t) on ON, = U 08,
and J(x,t).n, =0 on 0y | | (0¥ — IN,) (3.11)

where 0% is the boundary of the microstructure .

2.1 Asymptotic derivation of P,

We introduce the Neumann function N (x, xg) solution of the differential equation
[26]

DAN (x,%9) = —0x,(x), x € Q, (3.12)
ON 1

and we first compute

1= [ (D60~ 9 - ) ~ ki) A xa)

/ DAN (x,x¢)p(x)dx, (3.14)
where p(x fo (x,t)dt is solution of the differential equation
DAp(x) = V- bp(x) — k(x)p(x) = —pi(x) (3.15)

with the boundary conditions
J(x).n, = Kp(x) on ON, = U oY

and j(x).nX =0 on 0Q| | (0% —ON,) (3.16)
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where J(x) = —DVp(x) 4+ b(x)p(x). Consequently, on the one hand, (3.13) and
(3.15) yields I = — [, pi(x)N (x,%0)+P(x0) and, on the other hand, Green’s identity
leads to

I = _/am J(x).n, N (x, x0)dx + /Qb(x).VN(X, X0)p(x)dx
— /Q/f(x)ﬁ(x)/\/'(x, Xo)dx + ’aim , p(x)dx. (3.17)

Thus, we have
/ (H)FX) — pi(x)) N (x, x0)dx = — / F(5) N (x, x0)
Q ON,

+ /Q b(x). VN (x, x0)p(x)dx

1

+ —
109 Joa

p(x)dx — p(xo).  (3.18)

When the degradation rate is small (k < 1), for x € Q at a distance O(1) (with
respect to €) away from the windows, we consider the long time approximation
[26, 79],

p(x) ~ C’ee_¥, x €, (3.19)
where

lim O, = +oc. (3.20)

In particular, we approximate (see [79] for details)

|8_1§2| aQ]5()()dx + /Qb(x).v./\/(x, X0)p(x)dx =~ C’ee_@. (3.21)
Consequently, (3.18) reduces to
/(l{:(x)ﬁ(x) — pi(x)) N (x,%0)dx = —/ J(x) 0, N (x, x0)dx
Q ONq
v Ce T~ pxo). (3.22)

The leading order term g;(s = |x — x;|) of the flux J(s).n, in the small absorbing
disk 0€; of radius € has the form [80]

. o

where g is a constant. Integrating (3.15) over Q, we obtain

/U?_laﬂi J(x).nydx = /Qpi(x) —k(x)p(x)dx =1 — /Q k(x)p(x)dx.  (3.24)
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Injecting the long time asymptotic (3.19) and the leading order form (3.23) of the
flux in the expression above, we obtain

L 2msds ®(x)
Zg(’) = QWEZQO =1- / k(x)e” D dx. (3.25)
i=1 v e

Without any loss of generality, we choose xg = x;, 1 < ¢ < n and, due to the
partially absorbing boundary condition (3.16), we approximate

—1 [ 27msgids  —2gj

= . 3.26
K‘@QJ 0 52 — 32 RE ( )

p(xi) =

Injecting (3.26) and the flux form (3.23) in (3.22), we obtain

- 275l
k de_/ 2T (s,x5)ds | stoNtx)a
| (9500 = ) V NG = 3 | N
bt 2 (3.27)
Ke
For xo on the domain boundary [81]
N(x,%xq) = ! + Wy, (%), (3.28)

21 D|x — Xo|

where wy, is a regular harmonic function. For ¢ # j, we assume |x; — x;| > € and
that for x € 09, N (x,x;) ~ N (x;,%;). Consequently, we asymptotically have

/Q (k(X)ﬁ(X) e (X)) N(X XZ dX a / D/ 52 — 32 B . Z ,N(Xj7 Xi 6 w/g6]227_T832

J=Llj#1
X 2 i
+ Ce "+ (3.29)
KRE
that is
/(kz( (%) - p ) Noox)dx = (2 - ) g (3.30)
i X)p(x) — pi(x X, x)dx = | —— o0 | .
— 2me Z N(xj,xi)g?—i-C’Ee*q)(;i).
j=1,j#1i

The integral [, p;(x)N (x,x;)dx is uniformly bounded for smooth initial distribu-
tions p; as € — 0 (and is an integrable singularity for non smooth distributions (see
[79] for details)) while all other terms in (3.31) are unbounded in view of (3.20).
Consequently, in the small degradation rate k£ < 1 limit, we have

m 2 D(x4)
(E - E) go + 27T€J IZJ#N Xj,Xl) =Ce "D . (3.31)
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Finally, by solving the linear system

) A i (xi)
J=LJ7

2776296 =1- C’e/ k(x)e’ydx. (3.32)
i=1 &

we can get the n + 1 unknowns (C., ¢?, ..., ¢%) and compute

Pnzl—/k( )p(x dx_l—C/ —*5 dx. (3.33)

We point out that the linear system (3.32) derived with an integral method is very
similar to the linear system (3.16) obtained with a method of matched asymptotic
expansions in [28].
Leading order asymptotic of P, in the limit % <1

Summing the n equations that compose the linear system (3.32) we have

( )Zgo—i-%rez Z N (x;,%:)g —Ceie

i=1 j=1,j#i

(3.34)

Because for all j # i, N'(x;,x;) = N(x;,X;), we get from the equation above :

_<I>(X)
D

T 2\ 1—-C. [ k(x)e
<ﬁ_§) - —i—27reZgz Z N (x;,x;)

= Jj= 1#%

—C Z 5 (3.35)
i=1

When the n > 1 holes are uniformly distributed over 0% we approximate

- Jon N (%, x:)dx
i 7 ~ ] 3-36
w2 Nlex) = g 330
J=Llj#1
and
n ,M
1 Lot [y €T D dx
- S T 3.37
n Z <7 10| (3:37)

Consequently, (3.35) reduces to

P(x)
T 2\ 1-C. [ k(x)e D dx o Jom N (x,x;)dx
s = 2) ox
(2D /{6) 27e * ﬂneZg |0
P(x)
[ose” D dx
= ”Cﬁaxm—z]' (3.38)
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For x; € 0%, the leading order of Jox N (%, xi)dx

in the limit % < 11is (see the

|0%]
appendix for the detailed computations)
Jos NV (x,x;)dx Jo u(x)dx
o5 NT = o (3.39)

where u(x) is the MFPT to 0% of a diffusing particle (diffusion constant D) that
starts from a position x in €. If Cy; is the capacitance of the conducting surface 0%,
then (equation (27) in [29])

2]

Consequently, by identifying (3.39) and (3.40) we obtain, for x; € 0%
Jos N (x,%;) Jdx 1
= . 3.41
|0%] ~ DCs, (341)

Replacing (3.41) in (3.35) we have

(x)

P(x)
2\ 1-0C [ k(x)e” D dx | [om € P dx
( ) + Wne;gz D nC. ,(3.42)

2D ke 27e Cy |0%]
that is
P(x)
T 2\ 1-C. fQ k(x)e” D dx n B(x)
— - — 1-C. | k(x)e- D d
<2D me) 2me * DCr, Q (e)e™ 2 dx
P(x)
ey
ncﬁff’E TaEI x (3.43)
Finally, we find that
1 1 n 1
4nDe  kmne2 | DC
C. = =y , : : 5 L (3.44)
D x
aETﬁm X+(4 e z—i-DC)/k(x)e_%)dx
nDe  kmne s ) Jo
Reinjecting (3.44) in (3.33), we find
Jos e dx
|0%]
= [ne Bd 1 1 1
% X _2)
— k d
03] (4nD€ e DC’g)/Q (e)e™ 2 dx
Jos e dx
0%
- |02 , (3.45)
D x
8ETGE| X—i—oz/k(x)eq)lg)dx
Q
where
1 1 1
a= — + . (3.46)

4nDe kmnez  D(Cys
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2.2 Asymptotic derivation of 7,

We introduce ¢(x fo tp(x,t)dt, solution of the partial differential equation
DAq( ) = V- bg(x) — k(x)q(x) = —p(x) (3.47)

with the boundary condition
Jq(x).nx = kg(x) on ON, = U 0%,

and Jq(x).nx =0 on 0, | | (02 — IN,) (3.48)
where J4(x) = —DVq(x) + b(x)g(x). We compute

/Q (DAg(x) — V - bg(x) — kp(x)) N (x,x%¢)dx — /QDA./\/(X, X0)q(x)dx  (3.49)

and we consider the long time approximation [26],
()
q(x) ~ Tee’%, x € (. (3.50)
We consider the n > 1 small windows are uniformly distributed over 0¥ and very
similar computations to those performed for the derivation of Py lead to the leading
order asymptotic of 7, in the limit % <1

e f _Md ok (351)
£ X _ —P(x)
e ——— 4 a | k(x)ee D odx
( g e )
where « is given by (3.46). Thus, an asymptotic for the mean time
C’/ e P dx — T/k( )e’¥dx
Q
C’e/k(x)e@g()dx
Q
is
a/eq)g()dx
T A o Q (3.52)
Jos € dx

P(x)
—1—a/ k(x)e” D dx
o5 o)

Replacing « by its value (3.46), we finally have

— e X
A _ dnDe  rkmnez  DCx ) Jq ' (3.53)

fazejj)dx+ 1 1 N 1 /k( ) Ry
— x)e X
|0%] dnDe  rkmne2  DCy ) Jq

2

n
When the ratio 0 = % of the nuclear surface that is occupied by the small par-

tially absorbing holes tends to 0, the function f(o, k) given by (3.9) tends to 1.
Consequently, for pure diffusing particles (b(x) = 0) with no degradation activity
(k = 0), the mean time (3.53) reduces to the asymptotic formula (54) in [29].
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3 Tests against Brownian simulations

We consider a spherical cell (radius R) with a centered spherical nucleus ¥ (ra-
dius §) uniformly covered by n small pure absorbing pores (radius €) (see FIG. 3.1
(right)). We impose reflecting boundaries at the external membrane r = R and at
the nuclear surface, excepting at nuclear pores ON, = [J;_, 9€2;, centered at uni-
formly distributed locations (x;);_,. We consider a constant radial drift B directed
toward the nucleus (potential ®(r) = —Br). Because ¥ is a sphere of radius 9, we
have that Csx, = 476 and

1 1

— . .04
@ 4nDe + 4w DS (3.54)

To have concise expressions, we assume the killing rate is constant k(x) = ko and
consequently (3.45) and (3.53) lead to

o
(S

e D
" a(e ¥ (Be2+2(8) 0+2(8)") e ¥ (B +2(8) R+2(8)") ) ke b
(3.55)
and
o (P (B +2()) 0 2(3)°) - ¥ (R +2(5) R+2(5)))
T =

In Fig. 3.2, we test these theoretical asymptotics as well as (3.7) against Brownian
nme

62
surface covered by the absorbing windows is constant o = 2% (surface covered by
2,000 pores of 25nm diameter on the nucleus of a chinese hamster ovary cell [70]).
Numerical parameters are summarized in table 3.1.

The nice agreement between the Brownian simulations and the new asymptotics
(3.55) and (3.56) of P, and 7, respectively is the central result of this article. We
point out that the additive term that accounts for the interactions between the
windows is crucial : for 100 windows, the new asymptotic for the conditioned MFPT
Tn & 2min., which is very close to simulations, is twice as large as the one derived
in [26] 7, & 1lmin.. In addition, B — (é)g is not that small in our simulations,
which confirms a large range of Vahélty for the computed asymptotics. Finally, even
if the surface covered by the n absorbing windows is unchanged, the conditioned
MFPT to a window significantly decreases with n : for n = 100 windows, the MFPT
Tn & 2min. is divided by 2 compared to the single window case 7,, = 4min.

of the nucleus

simulations for an increasing number of holes. The ratio o =

4 Conclusion

Intermittent dynamics with alternative periods of free diffusion and directed
motion along MTs characterizes many cellular transports. When the intermittent
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Tn(s)
260
2401

Number of Windows

"10 20 30 40 50 60 70 8
Number of Windows

FIGURE 3.2 — New theoretical asymptotics (3.55) and (3.56) (dashed line) for the pro-

bability P, (left) and the conditioned MFPT 7, (right) are compared against Brownian

TZT['€2

simulations (solid line) for an increasing number of absorbing windows (the ratio o = P
T

of the nuclear surface covered by nanopores is constant o = 2% [70]). Asymptotics (3.7)
that do not account for the interactions between the windows are also drawn (dotted line).
1000 random trajectories are simulated. The parameters are summarized in table 3.1.

TABLE 3.1 — Numerical parameters used for Brownian simulations

Parameters Description

Value

D Diffusion constant
of the virus

B Drift

o Surface covered by
the n nuclear pores

k Degradation rate
R Radius of the cell
) Radius of the nucleus

D = 1.3um?*s™ ! (as observed for
the Associated-Adeno-Virus [14])

B = 0.2ums™! (see chapter 4)
o =2% [70]
k =1/360s"! (10 times the rate observed
for synthetic gene vectors [32]

R = 15um (for a chinese hamster
ovary cell [82])

d = bum|70]

4. Conclusion
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particle can be degraded through the ubiquitin-proteasome machinery or trapped
by the crowded cytoplasm, we derived here new asymptotics for the probability
P, and the mean time 7, the particle reaches a small partially absorbing target
among n. These new asymptotics account for the geometrical interactions between
the windows. When the targets colocalize on a small structure X, asymptotics of P,
and 7, are obtained in the limit % & 1. In particular these formulas apply for DNA
viruses or synthetic gene vectors that have to reach a small nuclear pore among the
2,000 that are distributed on the nucleus to deliver their DNA. These theoretical
results are tested against Brownian simulations and we observe a very nice agreement
between curves. In a future work, it would be very interesting to explore deeper the
interactions between the small holes and get the dependency of both P, and 7,
to the coverage o intuited [77] or observed with simulations [78]. Quantifying viral
movement in the cell cytoplasm would be very helpful for understanding the key

limiting steps of infection to design optimal drugs and viral gene vectors [72].

5 Appendix

Jos NV (x,x0)dx
03|

, where u(x) is the MFPT to 0% of a diffusing particle

In that appendix we show that in the limit % < 1, for xg € 0%,

Jo u(x)dx
2]
(diffusion constant D) that starts from a position @ in §2.. We consider 0% is purely
absorbing and the mean first passage time u(x) to 0% of a pure diffusing particle
particle (diffusion constant D) that starts at a position x in € is solution of the

Dynkin system [21]

tends to 7 =

DAu(x) = —1 for x € Q, (3.57)

with the boundary conditions

u = 0ondX
D% = 0 on 0f. (3.58)
We compute
/ DAu(x)N (x,x0)dx — DAN (x, %0 )u(x)dx, (3.59)
Q

where N (x,X) is the normalized Neumann function solution of (3.13). Green iden-
tity then yields

— /QN(X, Xo)dx + u(xg) = /az D%(X)N(X, Xo)dx + %. (3.60)

0 D% (x)d
% < 1, for x in 9%, we approximate D8_Z<X> ~ hy = %

and integrating (3.57) over €2, we obtain

ou
/8E D () = [0, (3.61)
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Q d
that is hg = —%. We introduce the long-time asymptotics u(x) ~ 7 = %
in (3.60) and we choose xq in 0% :

9]
N (x,%x0)dx = N(x,x0)dx + 7. (3.62)
105 Jox
Because [, N(x,x%0)dx = 0(1) [26], we finally have
9]
T = N(x,x (3.63)
TS ™ 6200
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Chapitre 4

Quantitative analysis of virus and
plasmid trafficking in cells, Phys.
Rev. E 79 (2009)

1 Introduction

The study of the motion of many particles inside a biological cell is a problem with
many degrees of freedom and a large parameter space. The latter may include the
different diffusion constants of the different species, velocities along microtubules,
their number, the geometry of cell and nucleus, the number and sizes of nuclear
pores, the various degradation factors, and so on. The experimental and numerical
exploration of this multi-dimensional parameter space is limited perforce to a small
part thereof, due to the great complexity of the biological cell. A great reduction
in complexity is often achieved by coarse-graining the complex motion by means of
effective equations and their explicit analytical solutions, which is the approach we
adopt here. We are specifically concerned with finding a concise description of virus
and plasmid trafficking in cell cytoplasm.

Recent studies of natural viruses [64, 15, 14| and synthetic (amphiphiles) DNA
carriers [72] uncover details of the cellular pathways and the complexity of cellular
infection. Viruses invade mammalian cells through multistep processes, which begin
with the uptake of particles in endosomal compartments. After escape, the particle
move inside the cytoplasm, and the journey ends at a nuclear pore where its DNA
is imported. We focus here only on the free cytoplasmic trafficking, a step that both
natural and synthetic DNA carriers share. Cytoplasmic trafficking remains a major
obstacle to gene delivery, because the cytosolic motion of large DNA molecules is
limited by physical and chemical barriers of the crowded cytoplasm [3, 4]. Whereas
molecules smaller than 500kDa can diffuse, larger cargos such as viruses or non-viral
DNA particles, require an active transport system [5]. Viral infection is much more
efficient than gene transfer using polymers- or lipids-based vectors, where a large
amount of endocytozed DNA (typically over 100.000 copies of the gene) is required
to produce a cellular response, while only a few copies seem to be necessary in the
case of viruses.

A recent study [65] showed that microtubules shape the distribution of molecular
motors and vesicle trafficking inside the cell cytoplasm by means of a combination
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of experiments and numerical simulations. The distribution of viral species was ana-
lyzed in [48, 83] by means of the mass-action law and Brownian simulations, but not
at a single particle level. In addition, the problem of a viral particle reaching a small
nuclear pore was not considered there and this question is central here. In general,
the mechanism of a single DNA and viral delivery to a small nuclear pore in the
cytoplasm is still an open question. The mean time for a random particle to arrive to
a small target has been studied in [84] and in the context biophysical questions and
cell biology in [85, 27, 30|. We propose here a coarse-grained reduced description of
viral trafficking in the cytoplasm and compare it to plasmid diffusion. Specifically,
we are interested in the probability py and the mean time 7y for a DNA carrier or
a virus to arrive to a small nuclear pore. The evaluation of these quantities calls for
a quantitative approach to the description of particle trajectories at an individual
level and also, to quantify the role of the cell organization.

The paper is organized as follow : we start with the observations that a viral
movement can be described as a combination of intermittent switches between pure
Brownian diffusion and active transport along microtubules [24] (figure 4.1), while
DNA motion can be characterized as pure Brownian. We also account for multiple
factors involved in degradation, such as hydrolyzation, destruction by proteasomes,
or any other factors that prevent irreversibly the particle from reaching a nuclear
pore such as entanglements in the cytoskeleton that definitively trap plasmids. This
degradation process is modeled as killing with a time-independent rate k(x). We use
the overdamped Langevin dynamics with a degradation rate to describe the viral
and DNA motion. We first recall the Fokker-Planck-type equations |21, 68, 26] and
run Brownian simulations to compare with the asymptotic approximations of py and
7y derived analytically [21, 26] and use these results to estimate the range of validity
of our analytical formula. We further compare our numerical simulations and the
new analytical formula for the distribution of killed viral particles. The second part
of the paper is dedicated to study for many independent viral or DNA particles, the
mean time for the first particle to reach a nuclear pore. This mean time is much
faster than the time for a single particle to reach a nuclear pore and we obtain here
an analytical expression which we then compare to Brownian simulations. In the
last part, using a new asymptotic analysis, we obtain novel estimates for py and 7n
in the large k limit.

The present approach is a first attempt to develop a theoretical tool for the
analysis of virus and DNA particle dynamics at the single molecule level and, hope-
fully, for the study of trafficking of synthetic vectors, a necessary step toward gene
delivery.

2 Modeling intracellular viral and DNA trafficking

Modeling DNA carriers trajectories. We model viral trajectories as a collec-
tion of pieces, each of which is characterized either as directed movement along
microtubules or pure Brownian motion [64, 15, 14]. In contrast, DNA motion in the
cytoplasm can be adequately described as pure Brownian motion [4]. Particles mo-
ving inside the cell are reflected at impermeable surfaces and are absorbed at nuclear
pores. A virus travels on microtubules as long as it binds to a motor. The three-
or two-dimensional position of a particle, X(t), is described by the coarse-grained
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stochastic dynamics

) V2Dw for a free particle
X = (4.1)
V(t) for a bound particle

where w is a d-correlated standard white noise and V(t) is a time-dependent velocity
along a microtubule. The velocity V() can be either positive or negative, depending
on whether a viral particle binds to a dynein or to a kinesin motor. However, it is
not clear what regulatory mechanisms is involved in such a choice [86].
Mathematical description of a viral trajectory in the cytoplasm. We consi-
der the trafficking of a viral particle from an endosome or the cell membrane to a
small nuclear pore. The cell cytosol is a bounded spatial domain €2, whose boundary
0f) is the external membrane 0€,; and the nuclear envelope (figure 4.1). Most of
the nuclear membrane consists of a reflecting boundary 9N, except for small nu-
clear pores ON,, where a viral particle can enter the nucleus. We assume that a viral
particle that reaches a pore is instantly absorbed, so that this boundary is purely
absorbing for trajectories. The ratio of the surface areas is assumed small,

__lon|
o9

< 1. (4.2)

Homogenization of viral trajectory. To replace the intermittent dynamics bet-
ween free diffusion and the drift motion along microtubules, described in equation
(4.1), we use a calibration procedure described in chapters 1 and 2. In this homoge-
nization procedure, the motion is described by the overdamped limit of the Langevin
equation

dX = b(X) dt + V2D dW, (4.3)

where D is the diffusion constant and b(X) represents the steady state drift that
account for the microtubules density, the forward and backward binding rate and
the velocity along the microtubules (see chapters 1 and 2). Because most of the
microtubules starting from the cell surface converge to the centrosome, a specialized
organelle located nearby the cell nucleus (figure 4.1), we choose in a first approxima-
tion a radially symmetric effective drift b(X) converging to the nucleus surface. We
thus neglected the minor contribution of microtubules that are not oriented along
the radial direction. This radial geometry approximation is actually common in bio-
physical modelings of in wvitro experiments [65, 25|. Thus, although viruses move
bidirectionally on microtubules, the overall movement is directed toward the nu-
cleus, and we only consider here this average component [86]. The drift component
(4.3) can be written as

X
b(X) = —b(r) =, (4.4)
| X|
with 7 = | X| is the radial distance to the cell center. In first approximation, we

approximate b(r) as a constant b(r) = B, which depends on many parameters, such
as the density of microtubules, the binding and unbinding rates and the averaged
velocity of the directed motion along microtubules (see chapters 1 and 2). Because
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Virus |
trajectory

Nuclear
pores I

Simulated trajecto

Dil'GCtGdt 1 (drift+brownian motion)
movemen Cvtoplasm 1
(drift) ytop

() 1

Microtubules |

FIGURE 4.1 — Schematic representation of the viral trajectory approximation : on the
left-side of the idealized cell, a real trajectory consists of intermittent Brownian and
drift epochs, whereas on the right-side, we show two simulated trajectories obtained
by equation (4.3). In one of them, the viral particle arrives alive to a nuclear pore,
while in the other, it is killed inside the cytoplasm. The round dots on the nucleus
surface represent nuclear pores.
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the microtubule density increases near the nucleus, a radial dependent drift is more
accurate (see chapter 2), but we already show in the first chapter that the constant
approximation is good enough and it leads to more concise analytical expressions.
From trajectory description to the probability and mean arrival time.
Viral killing or immobilization and naked DNA degradation by nucleases, are coarse-
grained into a steady state degradation or killing rate k(X). We briefly recall (see
[26] for the details) how to derive the asymptotic expressions for the probability Py,
that a DNA carrier (single virus or DNA) arrives to a small nuclear pore alive and
for the mean time 7, using approximation (4.2). The asymptotic estimates depend
on the diffusion constant D, the amplitude of the drift B, and k. These computations
are based on the small hole theory [27|, which describes a Brownian particle confined
to a bounded domain by a reflecting boundary, except for a small absorbing window,
through which it escapes. The domain 2 contains a spherical nucleus of radius ¢ (a
disk in the two-dimensional case). The survival probability density function (SPDF)
p(x,t) to find the virus or naked DNA alive inside the volume element @ + dx at
time ¢ is given by [26]

p(x,t)dx = PriX(t) € & +dx, 7" > t,7* > t|p;}, (4.5)

where 7¢ is the first passage time of a live DNA carrier to the absorbing boundary
ON,, 7" is the first time it is hydrolyzed or immobilized, and p; is the initial dis-
tribution. The SPDF p(«,t) of the motion (4.3) is the solution of the mixed initial
boundary value problem for the Fokker-Planck equation (FPE) [21]

%(m, t) = DAp(x,t) — V -b(x)p(x,t) — kp(x,t)
p(x,0) = pi(x) for xe€ (4.6)

with the boundary conditions

p(x,t) = 0 for x € IN,
J(x,t) ng = 0 x€IN, Uy, (4.7)

where ng is the unit outer normal at a boundary point . The flux density vector
J(x,t) is defined as

J(x,t) = —DVp(x,t) + b(x)p(x,1). (4.8)

The survival probability Py that a live DNA carrier arrives at the nucleus is Py =
Pr{r® < 7%} [68]. This probability can be expressed in terms of the SPDF [68] by

Py=1-Pr{ir">7"} = 1- / k(z)p(x) dx, (4.9)
Q
where p(x) = [ p(e,t) dt is the solution of equation

DAp(x) — V -b(x)p(x) — k(x)p(x) = —pi(x) for x €

with the boundary conditions (4.7). Using the pdf of the time to absorption, condi-
tioned on the event that the DNA carrier escapes alive Pr{r® < t|7%¢ < 7%}, we
define the conditional mean time to absorption as

N = E[Ta|7a<7'k]—/ (1—Pr{r* <t|7m* < 7F)at.
0
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Following the computations of [26], we get

. [ itayiz— [ (o) de -

1—/91{(:13)]3(:13) dx

where

q(x) = /000 sp(x, s)ds (4.11)
satisfies [26]
—p=DAqg(x) — [V -bg| — kq for x e (4.12)

with boundary conditions (4.7).

Comparison of the Brownian simulations with the asymptotic analytical
formula : the plasmid case. The two extreme cases where the previous equations
can be developed into analytical formula are a high and small degradation rate
compared to the cytoplasm exploring rate defined as ﬁ, with || the volume of cell
cytoplasm. For small k, we obtained in [26] explicit expressions for Py and 7y, for
a nucleus containing n well separated small holes (nuclear pores) on its surface. In

a three dimensional cell, the asymptotic analysis for naked DNA (b = 0) leads to

1 d _—(457‘”) (4.13)

PN— ~— ana 7y = - s
1+ ‘Q‘k 1+ ﬂ
4nDn 4nDn

~ 1
where k = 9] / k(x) dx and 7 is the radius of a small absorbing disk (a nuclear
Q

pore). Formula (4.13) does not depend on the specific shape of the degradation rate
k, but rather on its integral.

We compare here this asymptotic formula with pure Brownian simulations (no
drift), as schemed in the right side of figure 4.1, for eq. (4.3) with the parameters R =
20um; 6 = R/5; n=0n/12 = 1.05um; k = 1/3600s~* [32]; D = 0.02um?s™! [4];
n = 1, (a single big hole), which corresponds to a cell with 2% of the nuclear surface
occupied by a large nuclear pore (the n = 2000 pores of radius 25nm [70] observed
experimentally occupy exactly 2% of the nuclear membrane). Numerical simulations
using an effective big hole actually leads to an over estimation of the mean time
compared with many holes : Formulas (4.13) are only valid for few well-separated
holes and the third chapter reveals the true formula for the narrow escape time
with many holes. Finally, the small diffusion constant D = 0.02um?s~! accounts
for electrostatics binding and entanglements that slow down processing of plasmids.
The results are summarized in the table below, where we observe a nice agreement
between the analytical formula and our Brownian simulations.

Time and Probability ™ Py
Theoretical values 35675 0.90%
Simulated values (2000 particles.) | 3564s 0.97%
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Comparison of the Brownian simulations with the asymptotic analytical
formula : the virus case.

For a virus trajectory governed by equation (4.3)with a potential drift b = =V ®,
when the degradation rate is small compare to the diffusion rate, the leading order
term of the probability and the mean time are given by [26]

1 )
109 Jog

e D dSx

Py = 0 o (4.14)

1
— e Dde—i-—/eDkzcda:
109 Ja dnDn Jo (@)

1 / *¥d
e £
T AnDn Jo (4.15)

_2(x)

1
— e Dde—i-—/e_Dk:wdm
99 o by Jo© T

where Sy is the surface element corresponding to the boundary position x. For
a scalar drift B and degradation rate k that are both constant, in an idealized
spherical cell (radius R), a direct estimation of (4.14) and (4.15) gives

(&
PN - B BR Bs )
(e (B r2(8) 6 +2(8)) —e ¥ (3R +2(3) R +2(3)) )kt ¥
(4.16)
i (P (Br2B) 0 +2(R)") - ¥ (B +2(8) R+2(3))
™ = IS B B
n (F (B 2@ e r2()) e (B r2(B) R 2(R)) ) ke ¥

Contrary to the formula given in [26], to match the Brownian simulations, we have
kept in those expressions the dependency in R. In figure 4.2, we compare (4.16) and
(4.17) with Brownian simulations for several values of the drift and a constant de-
gradation rate. Further more, equations(4.16) and (4.17) show that the main contri-
bution to the probability and the mean time comes from a boundary layer located
near the nucleus surface.

To see the efficiency of formula (4.16) and (4.17), we can now predict the effect
of changing the effective drift B = 0.2 by +30%. We recall that value of the drift
come from the following rational : for a large number of microtubules, the drift B
equals the apparent velocity (which is about 10% [87] of the minus end velocity,
approximatively equal to 2um/s [14]). We found that increasing the drift leads to a
probability P;;g()% = 0.80 and a mean time T]J\;gO% = 731s, while reducing the drift
gives Py*% = 0.64 and 7% = 1293s.

We conclude that decreasing the drift amplitude by 30% increases the time by
33% (T = 974s) and decreases the probability by 12% (Py = 0.73), while increasing
the drift by 30%, reduces the time by 22% and increases the probability by 10%.
These results show the nonlinear effect of the drift. In a biological context, decreasing
the drift can be implemented by disrupting the microtubule network. Moreover,
using formula (4.13) with the viral parameters given above, we obtain for zero drift
(B = 0), a mean arrival time equal to 7v = 2262s. We conclude that the drift due
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FIGURE 4.2 — MFPT (top left) and the arrival probability (top right) for increasing
values of the drift (k = ﬁs‘l) and for increasing values of the steady state degradation
rate (B = 0.2ums~!) (bottom). 2000 random trajectories are simulated, theoretical and
simulated graphs are respectively drawn with dashed and solid lines. The parameters are
R =20pm; § =4pm; n= 756 = 1.05um; D = 1.3um?s™14]; n = 1.
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to active transport along microtubules decreases 7 of a virus to a nuclear pore by
a factor 2.5.

3 Distribution of degraded DNA carriers

Gene delivery using viral vectors, such as AAV, needs the most efficient virus i.e.
the one reaching the nucleus alive with the highest efficiency. Following endocytosis,
viruses can be destroyed either in lysosomes or in the cytoplasm (somewhere between
its endosomal release and nuclear pore binding). The distribution of killed viruses
can give insights on the cytoplasm degradation activity. For a given steady state
degradation rate k(x), the probability py(x)dx that a DNA carrier is degraded in
the ball B(x,dx) of center x and radius dx is given by

pr(x)dx = p(x)k(x)dx. (4.18)

where for sufficiently small nuclear pores and degradation rate, the leading order
term of p(x) is given by [26] :

_2()
e~ D
- 4Dn
p(x) ~ N e} ) (4.19)
1 e fﬂ e~ b k(x)dx
— e” D dSy +
109 Joq 4Dnn

In a spherical geometry with a constant degradation rate k and a constant radial
drift b(x) = —By #0 (i.e. for a potential ®(r) = Br), we get :

Br

(r) he
Pe(T) = 2 3 2 3 :

_Bs s (5D D* D _sr (5D D* D

4Dnne D—|—47T/€(€ D(5§+25§+§>—6 D (RE—FQR?‘FE
(4.20)
For nnp << 1, we obtain
_Br
= S 421)
pk(T)—4 o 52D+26D2+D3 _ _en R2D+QRD2+D3 (
T\ B mip) ¢ B 7 T 5

In FIG.4.3, we compare the theoretical distribution (4.21) with the killed viruses
distribution obtained with Brownian simulations (in spherical geometry). The simu-
lations and the analytical formula agree nicely and the maximum of the degradation
density probability (equal to pg(r)4mwr?dr) is obtained by a direct computation using
formula (4.21). We found that it is achieved for a radius r = 2D /B = 13um.

4 Impact of the degradation density distribution

In the plasmid case, because Py depends only on the integral of k(x) over the
cytoplasmic domain, the degradation distribution does not impact the arrival pro-
bability. However, because viral particles spend most of their time in the nuclear
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FIGURE 4.3 — Distribution of killed virus 477?py(r). The simulation is obtained for 30000
Brownian trajectories (solid line). Parameters : R = 20um; § = 4pum; n = {56 = 1.05um ;
D =13um?s ';n=1and B = 02ums".

neighborhood, a large concentration of killing factors such as proteasomes in that
area could substantially decrease the arrival probability Py. To study the impact
of the degradation distribution, we compare the virus arrival probability Py = 73%
obtained with a constant degradation rate k& with the one obtained with an ex-
ponentially distributed in a nuclear neighborhood. We chose k(r) = ae™" where
f 6R e~ 4mr2dr
) klQ| . s [0 20 2 e (R* 2R 2
glvesa:mvvlthh()\)zélﬂ(e X+E+F —e T_I_V_I_F :

In that case, we obtain

is a normalization factor and A a constant. A direct computation

Py = . 4.22
YTORQ RO+ E) (4.22)
dnDn  h(N)
In FIG. 4.4, we plotted Py as a function of X : When degradation factors and virions
colocalize, which happens for A ~ %, we obtain that Py = 64%, which gives a 9%

decay compared to the constant killing field case (Py = 73%). We conclude that
the degradation factor distribution does not impact drastically the virions arrival
probability.

5 Mean first passage time of the first DNA carrier
to a nuclear pore.

Hereafter, we compute the conditioned MEPT 74,5 (M) for the first DNA carrier
to attain a nuclear pore. The M —DNA carriers trajectories are independent and we
shall use the conditioned MFPT 7 of the j”* carrier to a nuclear pore. As in [26],
we consider the absorbing time 7¢;, (M) of the first DNA carrier to the absorbing
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FIGURE 4.4 — The arrival probability Py is plotted as a function of the characteristic

length A\ = %. We choose an exponential distribution for the degradation rate k(1) = ae™,

concentrated in a neighborhood of the nucleus, where viruses accumulate.

boundary 9N, and the first time 77, (M) it is degraded. The probability the first
DNA carrier arrives to the absorbing boundary before time ¢ conditioned on not
been killed is then given by :

P(t) = Pr{T?irst(M) < t|T](‘1irst(M) < lefi'r‘st(M)vpi}' (423)
The conditional MFPT 7;,5(M) is defined by

(M) = /0 Ootd];—it)dt: /0 " (P(oo) — P(1)) dt. (4.24)

To derive an expression for 7;,.5 (M), we shall compute P(t) by using Bayes law :

_ Pr{T?irst(M) < t’ T;Lirst(M> < Tj]‘cirst<M>7pi}

. (4.25)
PT{Tfirst(M) < T]"Cirst(M%pi}

To estimate the numerator N(t) = Pr{rf; (M) < t,7f,,(M) < 7, ,(M),p;}, we
use that

PT{T;irst<M) < t? T?irst(M) < lefirst<M)7pi} =
1- PT{T}Iirst(M) > 1 or T?irst(M) > T]]‘Cirst(M)ﬂpi}' (426)
The event {7, (M) >t or 7§, (M) > 75, (M)} means that, at time ¢, none of

the M — DNA carriers have reached alive a small nuclear pore. Since the particles
are independent, we obtain

PT{T?iTSt(M) >t or T](”lirst(M) > T]]first(M)api} =
=M

J=1

1— Pr{r} <t,7) <77,pi}) . (4.27)
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where 7¢ (reps. 7) is the first time the j particle is absorbed (resp. killed). Using
the interpretation of the flux [26], we get that for any of the particles

t ¢
Prir} <t 7} < Tf,pi} = /0 ngJ(X,t).ndex = /0 J(s)ds, (4.28)

where n, denotes the normal derivative at the boundary point x and the flux is
defined in (4.8). Finally, we obtain the following expression for the numerator :

M

t
V() = Pr{zfn(M) < 6 7finM) < i)} =1 (1= [ 5(0)ds) (029
0
Similarly the denominator D(t) of P(t) is given by :
D(t) = PT{T}lirst(M> < T]]‘Cirst<M)7p’i} =1- PT{T]C“Lirst<M) > T]’?irst(M)api}7 (430>

and because the particles are independent :

j=M

D(t)=1- ] Priry > 7}, pi}. (4.31)

Jj=1

Using the definition of the probability Py that a particle is killed before reaching
the nucleus [26], we get

D(t)=1—-(1—Py)". (4.32)

Finally, the probability density function is given by

B N(t) B 1-— (1 — fot J(S)d8>M
P(t) = D{b) = 0o PN)M ) (4.33)

and the conditional MEPT 7.5 (M) of the first particle is equal to (4.24) :

o /oo (1= Jy J(s)ds) = (1= f;= T (s)ds) . .

N 1—(1— Py)M

Hereafter, we shall estimate the leading order term for 7.5 (A). In the long time
asymptotic, we approximate the pdf by its first exponential term : The leading order
term of p(x,t) is given by

p(x,8) ~ p(x, 0= with / p(x, 0)da = 1. (4.35)
Q

where \g = 1/7y ([21] p.175), is the first eigenvalue (this implies that there is

no contribution of the initial condition on the other eigenfunctions, see also [30]).

Replacing p(x,t) by its long time approximation in the equation (4.6), we obtain

the following equation for p(x, 0)

1
——p = DAp — V[bp] — kp. (4.36)
N
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Using (4.28), we obtain an explicit expression for the flux J(t) by integrating equa-
tion (4.36) over the domain Q, with [, p(x,0)dz = 1, we obtain

J(t) = eTj ( /Q p(x, 0)dx — Ty /Q k(x)p(x,O)dX) _ eﬁjv (1 . /Q k(x)p(x, O)dx>4.37)

Using the probability Py (4.9) and p(x) = [~ p =D (;), we get an expression
for the flux,
v Py _ ¢
Jt) = (1 - / k(x)ﬁ(x)dx) = N, (4.38)
TN Q TN

Replacing fo s)ds by its approximation (4.38) in relation (4.34) we get :

Trirst(M) = /OOO <1 - <116(1TN)}>)N)M - PN)Mdt. (4.39)

With the notation £ =1 — Py (0 < £ < 1) we have

rirst (M) = < _1§M /OOO ((eN +¢ (1 - eﬁv»M - 5M> dt. (4.40)

Thus,

+ 1 EﬂzM /0°° ((1 — e_fjv>M — 1) dt. (4.41)

An iterative integration by parts yields for 0 < k< M — 1 :
00 k M-k
/ (1 —e‘%) (e fw> dt LE— (4.42)
0 M>
Consequently, we have :

Trirst(M) = 1_£MMZlek 1§M£M/OOO<(1—6_T§V)M—1)dt.

Concerning right-hand side of equation above, polynomial identity : X¥ — 1 =
(X — 1) M X* leads to

/OOO ((1—6‘%)M—1> dt:—]‘g/oooe_fjv (1—e_fjv>kdt. (4.43)

Replacing M by k + 1 in (4.42), we get :

[ as-X 2= S e
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FIGURE 4.5 — Left : MFPT of the first virus to a nuclear pore. We generate 300 Brownian
trajectories (solid line). The geometry is given by R = 20um; § = 4um; n = {56 =
1.05um; D = 1.3um?s™'; n =1 and B = 0.2ums~!. Right : Normalized MFPT of the
first virus to the MFPT of a single virus, as a function of the probability £ = 1 — Py to be
killed before arriving to the nucleus. As £ tends to 0, Ty;s¢ tends to 5 (7n = 974s here) ;
whereas Ty tends to 7 when almost all DNA carriers are degraded.

Finally we have the concise expression (note that 7y is a function of ) :

Trirst(M) = {f(g/[ (Z_ (" —¢M) Ml_ k) : (4.45)

k=0

We compare in FIG. 4.5-left the analytical curves with the Brownian simulations.
Both curves match very nicely, which confirms the validity of the long time asymp-
totic approximation.

In FIG. 4.5-right, we plotted 7¢;,.:(M) /7y as a function of £, which is an increa-
sing function of £ : when the number of DNA carriers reaching alive a nuclear pore
decreases, the MFPT of the first survivor increases. Moreover, the curves confirm
that for small £, the leading order term of 7y (M) is

Tfirst(M) ~ i
TN(&) YA

whereas when £ tends to 1, (i.e. almost all DNA carriers are killed before reaching
nuclear pores) we get the approximation :

(4.46)

Trirst(M) ~ ﬁ <kZ:_O (M —k)(1-¢) Ml_ k;) = 7n(1). (4.47)

It would be interesting to find the general expression for 7¢;,(M) as a function of

.

6 The large degradation rate limit

Because the previous analysis [26] does not give any range of validity of the
asymptotic formula for the probability and the mean time to reach a nuclear pore,
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we decided to investigate more carefully the case where the degradation rate is large
k > 1. We computed in [26] Py and 7y in the limit of a small degradation rate
limit k(x) < 1, however in the plasmid case, the killing activity due to the protease
could be much larger than the diffusion time scale. Thus, we derive hereafter new
asymptotics in the large degradation rate limit. The analysis is quite different from
[26]. We start with a constant degradation rate k(x) = k (the computations for a
general radial degradation rate are given in the appendix). We consider a uniform

initial plasmid distribution over the cytoplasm p;(x) = py = —. To compute the

€
probability Py, we shall solve equation

1

DAR() = Kx)P) = —po =~y (4.48)

with the boundary conditions (4.7). When % is much smaller compared to k and for
a particle starting far from nuclear pores, we approximated the solution of Eq.(4.48)
by
! O(D 4

pouter(x) - m + ( ) (4 9)
However, this outer solution does not match the absorbing conditions. We now
construct an inner solution pju,e-(Xx) near the nuclear pores that will satisfy the
absorbing conditions and match the outer solution. In a local coordinates (p, s) near
ON,, where p measures distance from 9dN,, measured positively into €2, and s are
tangential variables in the plane p = 0 (see for example [88] and figure 4.6 where
the local coordinate system is represented in a two dimensional geometry with a
single nuclear pore). Projecting equation (4.48) on the p—coordinate (the variations

dNr

FIGURE 4.6 — Schematic representation of the boundary layer in a local coordinate system (p, s)
near the boundary ON,, where p is the distance from dN,, measured positively and s is the arc
length.

of p with respect to s are small compared to the variation in p), we obtain for the
leading order term p;pper :

d2pinner(p) k 1
dp2 - Epinner(p) = _D|Q|7 (450)

satisfying the absorbing condition on the nuclear pore

pinner(o) = 0. (451)
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Far from the boundary layer [88], the matching condition is

%irgoo Pinner(P) = Douter = ﬁ (4.52)
Consequently, near the boundary we get
Poverlp.5) = e (1= VE). (4.53)
To compute Py, we use formula (4.9)
Py=1- /Q k(x)p(x)dx, (4.54)

which can be rewritten as

PN =1- (/ kpouterdx +/ kpznner(p)dp) ) (455)
O\BL BL

where BL is the boundary layer. Using expression (4.49) for pouter, we get
Q\ BL
/ kpouter(m)dx - | \ | (456)
Q\BL il
and finally

/ kpinner(p)dp = 9] (IBL|+|8N|/ —e \/_”dp>
BL

= |§12| (]BL\ |ON,| %(1—6 \/_P)) (4.57)

where pg >> \/> is the thickness of the boundary layer. Finally,

_|ON.| /D —V/Eno
Py =10 E+O<e ) (4.58)

In a three-dimensional cell, when the boundary consists of n well separated small
holes of radius 77, we obtain that

P 2o (AR, (450

Because our analysis is local, it can be extended to any degradation rate, large
compared to the exploring rate. In that case, when for n well separated narrow
pores of size 1,, 1 < ¢ < n, located at position z1, .., z,, the asymptotic formula is

n 2
~Y ™y | D —y/%
PN ~ W m + O (6 PO) s (460)
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FIGURE 4.7 — The probability and mean time for a plasmid to reach a small nuclear
pore plotted as a function of the constant degradation rate for a two dimensional flat
cell. The Brownian simulations match the analytic solutions (4.58) and (4.68) only after
a rate of 3000% = 3000—+2—< ~ 0.05s~', around 200 higher than the normal rate

m(R2—62)
1/3600 ~ 2.8 x 10~ 4571,

where ky is the minimum value of k£(x) among the pores. More detailed computations
are given in the appendix. From the fiting in figure 4.7 of the Brownian simulations
with the analytical formula (4.58), we conclude that the matching occurs for a very
large degradation rate (more than 200 times the normal rate [32]) and thus the large
case limit might only be useful to characterize gene delivery for abnormal cells, where
the degradation rate is large. The MFPT 7y to a small pore for a live virus is [26] :

Jop(x)dx — [, kq(x)dx
™ = .
Py
where q(x) = [;° sp(x, s) ds satisfies (4.12) with boundary conditions (4.7). To
estimate 7y, we consider for a small diffusion, an outer approximation of ¢ given by

— Pouter _ 1
Gouter k’ ‘Q‘k’z .

The leading term of the inner solution g;,,. in the boundary layer expansion of ¢
satisfies :

d2 Ginner (P) k Pinner 1 _p\/E
dp2 - Eqinner(p) - D - _D|Q|k’ <1 — € D> (463)

(4.61)

(4.62)

Ginner(0) =0 (4.64)

! (4.65)

lim Qinner (/)) = Qouter = W

2 s
VD

Consequently, we get :
1 ~VE P -VE
Qinner = T~17.9 (1 — € Dp) - ——F—— € DP, 4.66
Q&2 2v/Dk3|Q) (400
We get then that :
D
/ﬁ(x)dx — / kq(x)dx = |ON,| \/_3 +0 <€7\/%p0> : (4.67)
9) Q 2|Q|k2

6. The large degradation rate limit 113




Chapitre 4. Quantitative analysis of virus and plasmid trafficking in cells, Phys. Rev. £
79 (2009)

Finally,

For a large degradation rate, our analytical results match the Brownian simulations
(see figure 4.7). Moreover, the present local analysis can be extended to any degra-
dation rate and for n well separated narrow pores, located at position x4, .., z,. We
anticipate the following asymptotic formula,

Ly ! B
™R ; ) +0 (e ) : (4.69)

where ky = min, k(z,) is the minimum value of k(x) among the pores. kg is the
minimum concentration of killing factors among nuclear pores.

7 Conclusion

By describing the intermittent dynamics of a DNA carrier inside the cytoplasm
with an effective stochastic description (4.3), we derived a quantitative analysis of
the nuclear DNA carrying at the single unit level. Modeling the DNA degradation, as
protease activity, that occurs in the cell cytoplasm with a steady state degradation
rate k(x), we also derived expressions for the probability a DNA carrier hits a small
nuclear pore and the mean time it takes (in both cases of small and large degradation
rate). We also provided here the distribution of degraded particles.

When many independent viruses are involved, we computed the mean time to
a nuclear pore for the first one. We tested our analytical results against Brownian
simulations and we obtained that our curves match nicely. Our analysis provides
a tool to explore the multi-dimensional parameter space of nuclear DNA carrying.
Cytoplasmic trafficking is a limiting step of gene delivery and elucidating viral mo-
tion in the cytoplasm may provide a quantitative tool for the improvement and
optimization of delivery of synthetic vectors.

8 Appendix

We compute hereafter the probability Py for a carrier moving by random motion
to hit a small nuclear pore for a large (compared to the exploring rate) degradation
rate k(x). We use method based on a boundary layer analysis, similar as the one
produce in this manuscript for a constant k : far from the nuclear pore, the leading
order term of the outer solution is no longer constant and it is given by

pouter(x) = kz()j() + O(D) (470)

The initial uniform distribution of DNA carriers is py = % To compute the inner

[9]
solution near the nuclear surface, we expand the steady state radial killing measure
along the radial p—coordinate,

k(p,s) = ko(s) + ki(s)p + O(p*). (4.71)
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where k(p = 0,s) = ko(s) and %(p =0, ) = k1(s). Because pyyuter does not necessary
satisfy the reflecting boundary condition anymore, we construct two inner solutions :
the first one p},,,,., near N, and the second p?,,.. near ON,. Projecting equation
(4.48) on the p—coordinate (the variations of p with respect to s are small compared
to the variation in p), we obtain that the leading order terms of pi,....(p, s) fori = 1,2
satisfy :

a2p§rmer . ]{3()(8) + ]ﬁ(S)p i

1
; _ for 0 < p < 4.72
a2 D Pinner 1Q|D er0<p < pls) ( )
pilnner(p = 07 S) =0on 8Na
0
a_ppz?nner(p - 07 8) = 0 on aNT
fori= 17 2 hmﬁﬂoopmner(p> S) B pouter(p N 07 S) - |Q|k0(3)’

where po(s) > ’/%é) is the local thickness of the boundary layer. To solve the

homogeneous equation :

Plioner Fol3) + Fa(s)p
b BT R, —o, (473)

we use the change of variable

uw=u(p,s) = W, where (3(s) = (kll()s)) : (4.74)
By this substitution in (4.73), we get
82p§nner %
Ou2 — UDipner = 07 (475)

and the solution is

= Cli(s)Ai(u) + Ci(s)Bi(u), (4.76)

i
pinner

where C¢(s) and Ci(s) are real functions of s and Ai and Bi are the Airy functions

k k
([31], p. 446). In the small diffusion limit D < 1, u > ols) = 0(82) -> 1.
B)D (ky(s))? D3
Because either solutions p_ _ are bounded, but lim,,_, ., Bi(u) = +00, we get that
C? = 0 and consequently,

= C}(s)Ai(u). (4.77)

p;nner
To obtain a particular solution p.,... of equation (4.72), we write is as

o°p. ; 1
— — up; = 4.78
aUQ UPinner |Q|5(S)D ( )

Using the Scorer’s functions ([31], p.448) and because

lim Hi(u) = 400, (4.79)

U——+00
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we obtain that

« s
ﬁznner = ————=Gi(u 4.80
CEOEN (480
Collecting the results, we obtain that
. , -
p;nner u,s) = Cl S AZ [ + —GZ u). 481

Using the matching boundary conditions, we get

k
pzlnner(p = 0>$> = Pilnner (u =2 (8) S) =0

B(s)D’
apzznner o o ( ) apznner o /{ZQ(S) o
=09 = gin e (u=shps) =0
Using expression (4.81), we obtain the equations
k()) T ,(ko(s)) B
Cl(s)Ai | = G = .
() (ﬂ( D) 10D \Bs)D ! (4.82)
k()) 7T ./(ko(8)> _
C2(s)Ai’ | =7 G = .
s (5255) + e () = © 59
and thus
Gi (M%)
Clis) = ——b (4.84)
Q18(s)D 4; ( ’“&%)
Gi’ < Ko(s) )
C3(s) = il D) (4.85)
[QIB()D 4y (g@%n)
Finally the inner solutions p,,,.,. are given by
Gi ( kato) >
Phner (1,8) = = —— | Gi(u) — —— Ai(u) (4.86)
|Q|ﬂ(S)D Ai (;(0;)?))
Gi' (55)
Poner(t:8) = m | Gilw) = —-=CAi() | (487)
|Q2]6(s)D Ail (;(os()%)

with the outer solution, we use the large u—asymptotic of Gi(u), Gi'(u), Ai(u) and
Ai'(u) (31], p.448-450) :

1 7
Gi(u) ~ — Gi'(u) =
i(u) U G (u) 967Tu2
5 3 L 3
e 3u? uie 3u?
Ai(u) =~ JAY (u) R —————
) 2y/Tui ) 2v/m
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ko(s) + k1(s)po(s)

B(s)D
for A7 and a Taylor expansion at order 1 (k1(s)po(s) < ko(s)), we get

() (BT

For p = po(s) and thus u = > 1, using the asymptotic behavior

Consequently, using expressions (4.86),(4.88) and the asymptotics above, we get

1 (kO(S) + k’l(S)po(S),S) - 1 1 - Mpo(s)7

inner ~ o €
B(s)D (2] (ko(s) + K1(s)po(s))  |€2ko(s)
(4.89)
which matches well the outer solution (4.70) :
1 o o o _ kO(S) PO(S)
Pinner (p - 100(8>7 S) = Pouter (p - p0(8)7 S) +0 (e b : (49())

Similarly, p?,..., matches also very well :

_ SR,
pzznner (p = po(s)a 3) = Douter (,0 = po(S), 3) +0 <<€ Dol )> . (491)

We will now use the previous asymptotic analysis for the probability density function
to estimate the overall probability Py that a virus hits a small nuclear pore. Using
formula (4.9), we get

Py=1- [ ke =1~ ( [ 0k [ Phner KI5

Using the outer solution expression and that k(u,s) = ((s)Du (see 4.74) in the
boundary layer, we have

1
Py=1- / —dx — (s)Dup; ..., (u, s)duds
o\sL €] BL!

- (S)Dup?nner(u7 S)dUdsv (493)

BL?

where BL' and BL? are the boundary layers at resp. the absorbing and reflecting
boundaries (BL = BL' U BL?). Using expressions (4.86) and (4.87) for pi,.., in
(4.93), we obtain that

. ko(s)
O\ BL Gi | 3
Py=1- ||\T|| — / % Gi(u) — <+((:»Ai(u) duds
. o(s
Lt Ai (ﬂ(s)D)

U

oG
— /BL2@ Gz(u)—AZ_/<
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Equivalently,
. [ ko(s)
0\ BL Gi{ 56
Py=1- [\ BL| —i—/ iMu%ﬁ(u)duds + / <ﬁ >qu )duds
2] B [ 44 (;&%) B2 |92] A (; )

— —uGi(u)duds.
|, i

For large u, using the asymptotic expansion for Gi(u) (4.88), we obtain that

|BL|
—uGi(u)duds ~ ——. 4.94
|, e ] (4.94)

Thus

Py = / r & <5(S
B

Lt |Q| Ai ( ko( )SD>

Using expression (4.88), we obtain

&~

b
m

uAi(u)duds. (4.95)

??‘

>uAi(u)duds—|—/ n & (

b)
12 19 A ( ()D>

\-’U

At <ﬁD> B Gi (g—%) Ai’ (;—OD) B oy 1
- (g_) - (5_[)) z(,é“—D) —O<(5D) )_0(\/—5). (4.96)
(o)
In addition, in the small diffusion approximation D < 1, we have :
G S
Py = /BL1 Q%u%ﬁ(u)dud& (4.97)

k. k k
Using that u = o(s) + ki (s)p > o(5) > 1 and the asymptotic expansions (4.88),

B(s)D B(s)D

we obtain that

3
3
4

Py~ = ﬁ (S)D . dpds (4.98)
€ a1 < ko(s) ) _2<§0(5))§
e 3 (s)D
B(s)D

that is :

3 kg (s) 3 kq(s)
L[ () -105) (-89 1)
Py~ — 1+ e dpds. 4.99
N ’Q| B ko(S)p P ( )
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Because 0 < p < po(s) with po(s) = O ( D ) < 1, we use a Taylor expansion to

ko(s)
obtain
1 _( ko(s) %k (s)
Por— [ o (G8B) B eapas. (4.100)
Q[ JL

Finally, by replacing (3(s) by its expression (4.74),

Py =~ 1 eV koé&)pdpds. (4.101)
92 Jpr

By integrating (4.101) over p, we have :

1 D kqg(s)
Py ~ _/ (1 - e_VD”O(S)> ds. 4.102
Y= S\ Bols) (4.102)

For a sufficiently smooth killing field, when dN, consists of n well separated small
absorbing nuclear pore located at the points (x,) on 0f), we finally obtain :

1<q<n

L ONo| g~ | D V%00
T ; k(xq)-i-o e (4.103)

with ko = inf, k(z,) and py = infseon, po(s). In a three dimensional cell with narrow
pores of radius 7,, 1 < ¢ < n, we obtain

n 2
) D _ /R
Py ~ 4 O CEC 4.104
ool e 0 () .
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Chapitre 5

The endosomal step of viral infection

1 Introduction

Viral infection is a multi-step process that starts for most animal viruses at the
cell surface where they are internalized inside an endosomal compartment. Viruses
must then successfully escape the endosome, either to undergo cytoplasmic repli-
cation, or to reach a nuclear pore and deliver their DNA payload [15, 14|. Highly
conserved activities in viral proteins are associated with endosomal escape. In en-
veloped viruses, membrane-associated glycoproteins mediate the fusion between the
viral and endosomal membranes, while non-enveloped viruses possess penetration
proteins able to initiate formation of small pores leading to the endosomal mem-
brane lysis [89]. Due to the central role of endosomal escape in the viral entry
process, it is important to understand its nature and dynamics. Our goal here is to
analyze this step and to investigate how it depends on parameters such as the influx
rate, the number of viral particles or the endosome size.

Glycoproteins and penetration proteins are usually activated by a pH dependent
conformational change. As protons are pumped into the endosome, they bind the
proteins and trigger their conformational changes. This is the case for class I and II
glycoproteins of enveloped viruses (e.g. influenza virus hemagglutinin (HA) [90] and
flavivirus E protein [91]). Alternatively, conformational changes can be mediated
by low pH-activated endosomal proteases as for the Ebola virus [92] or the SARS
coronavirus [93]. In the case of non-enveloped viruses such as reoviruses, parvoviruses
and papillomaviruses, penetration proteins are activated at low pH, often through
the action of endosomal proteases (94, 95, 96]. Consequently, the efficiency of viral
infection must critically depend on both the resident time within the endosome and
the pH value. Yet, the absence of direct measurements of these parameters makes
the endosomal step hard to understand. Here, we propose a biophysical model to
analyze the endosomal resident time and the success of endosomal escape. In that
model, we consider that changes in the viral escape proteins are triggered by the
cumulative discrete events of protons or low pH activated ligand bindings.

Using a Markov jump process, we estimate the resident endosomal time and
obtain a description of bound ligand dynamics. We obtain the conformational time as
a function of the pH and validate our analysis by comparison with experimental data
obtained with the influenza HA [36]. We further confirm that only rearrangements
in the subunit HA1 are pH-dependent, other HA changes occur spontaneously [35,
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37]. The conformational change of active proteins is a common feature to widely
disparate viruses although the escape mechanism depends strongly on the virus
type. We are interested here in the release of small naked viruses coated by few active
proteins and consider that they escape the endosome when a single protein changes
of conformation and this is the limiting event. However, for enveloped viruses, such
as influenza, several other steps are required, such as a possible cooperativity of the
HA molecules [97] (see discussion). We use a Poissonian ligand entry dynamics to
derive the mean resident time before escape. Interestingly, we found that increasing
the number of viruses or the ligand influx, decreases the mean and the variance
escape time. Surprisingly to escape in the most favorable pH-range of [6.1 — 6.3],
we obtain that the number of viral particle should be equal to 5. In addition, the
endosomal size, that may vary due to fusion or splitting [2|, does not impact much
the escape dynamics rate.

2 Results

Modeling the conformational change of glycoproteins and penetration
proteins. The resident time of a virus inside an endosome depends on its ability
to disrupt and pass through the membrane. Escape mechanism is still unclear but
while membranes of enveloped viruses and endosome fuse locally, it seems that na-
ked virus form small pores in the endosomal membrane, leading to osmotic swelling
and lysis of that compartment [89]. These escape mechanisms are respectively indu-
ced by glycoproteins or penetration protein conformational change. To estimate the
resident time 7., we start when viruses are already located in a formed endosome,
neglecting endosomal fusion or split [2]. In a spherical endosome of ry = 0.45um and
volume Vj carrying n, viruses, viral particles carry np independent proteins (gly-
coproteins or penetration proteins) formed of ng sites that can bind competitively
ligands such as protons or endosomal proteases. Thus, a total of n,npn, sites can
bind ligands. When the number of bound sites at a single protein reaches a critical
threshold n., a conformational change occurs and initiates viral escape. In multi-step
process, such as for the reovirus [94, 98] where activated cathepsins have to remove
first the intermediate o3 protein, the general description can be obtained by using
successively several time the present model for each intermediate step involved in
the metamorphosis of the active protein.

To follow the conformational change for a single glycoprotein or a penetration
protein, we count the amount of occupied sites X (¢, ¢) at time ¢, for a given ligand
concentration c¢. During time ¢ and t + At, the number of bound sites can either
increase with a probability (X, ¢)At when a ligand arrives to a free site, decreases
with probability {(X, c)At when a ligand unbinds or remains unchanged with pro-
bability 1 — (X, c)At —r(X, ¢)At. Using the scaled variable z(t, c¢) = eX (¢, c) where
€= nis and Az = x(t + At, ¢) — z(t, ¢), we obtain the transition probabilities

Prob{Az = €|z(t,c) = x} = r(z, c)At,

Prob{Ax = —€|z(t,c) = x} = l(z, c) At,

Prob{Az = 0|z(t,c) =z} = (1 — r(x,c) — l(z,c)) At.
When the ligand concentration is fixed, the probability p(z,y,t, c) that the number
of bound is equal to y at time ¢ x(¢, ¢) = y, given that initially the number of bound
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is x (z(t = 0,¢) = x) is solution of the backward Kramers-Moyal equation [33] :

op = €
5% = mp—ra:cgﬁ )" p(x,y,t,c)
- (= 6)”
+ Uw,0) ) (0:)" plw v, te). (5.1)
n=1

The first time a glycoprotein or a penetration protein is filled up to a critical thre-
shold x. = = Is the mean first passage time 7(x, ¢) that the level of bound ligands

x reaches the level z., starting at a point x for a given concentration ¢, and satisfies
[39] :

L,7(xz,c) = —1 for x in [0, 2],
or(x,c)
Oz

7(x,c) =0 for x = 2z, and =0 for z = 0.

To estimate 7o(c) = 7(zo(c), ¢), we consider the number of bound ligands at equili-
brium 0 < z¢(c) < z.. For e < 1, 79(c) is approximated by [33] :

zc—xg(c)

To(c) = C(e,c) [ 1 — (i((i: Z))) E , (5.2)
where
\/ 2
_ 1 e% (f:) (zo(c), )
) @ omo)
and

Formula (5.2) links the affinities between the ligand (concentration ¢) and the bin-
ding sites of glycoproteins or penetration proteins to its conformational change mean
time 79(c). We validate our model by comparing our analytical formula for the mean
time with the measured HA conformational change kinetics obtained from experi-
mental data for various pH.

Validation of the model for the influenza HA. We derive here the transition
rate r and [ : r is the standard forward rate to the free binding sites. In the approxi-
mation that the binding sites occupy a small fraction of the available endosomal
surface, r(z,c) = (n(c)ns(1 — z))/7 [75] where n(c) = NcVj, is the number of endo-
somal protons in excess at concentration ¢ (N is the Avogadro’s number), ns(1 — x)
is the amount of free sites and 7 is the mean time for a proton to activate a binding
site.
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l(x,c)
r(z,c)
HA [35] obtained in a pH range of [4 — 7] and at temperature 7' = 300K, where the
average number of bound protons to HA1 is approximated by a decreasing linear
function of the pH (FIG. 3 of [35]) :

logio(c) +4 =14+ E (logio(c) +4) . (5.3)
7T—4 3

Because HA cannot bind less than the mean number of bound protons at pH = 7, we
calibrate 2o(10~"molL™') = 0. Interestingly, the relation z((c) shows that we are not
in the classical framework of the theory of chemical reactions where at equilibrium,
the number of bounds z; is a linear function of the proton concentration, rather here
the dependency is logarithmic. This suggests a possible mechanism of interactions
between the HA1 binding sites : a cooperativity mechanism between bound sites
that should be further investigated. In addition, when the pH decreases from 7 to
4, the number of bound protons increases approximatively from 123 to 132 (FIG 3,
[35]), thus the maximal number of bound protons is ny = 9, which defines the small
parameter € = 1/9).

To determine , we use the experimental values available for the influenza

zo(c) = 1+

l(w,c)  ha(z)er

r(z,c)  NcVo(l —z)
is the dissociation rate. Thus i((:;’ CC)) = / <cx> where f(z) = N—];;((?i )
concentration c(x ) 10~ 6B0=2+9 for which xo( (x)) = z, at equilibrium the mass
[(zo(c), ) f(z)
r(zo(c), ¢) o(z)
(2,¢) _ flx)e(x) _ 10-GO-0D
( .

z,c) c(r) ¢ c

We can now obtain the equilibrium ratio where ky(z)

Using the

action law reads ————= = 1, equivalently = 1 and we get

o~

(5.4)

<

To estimate from (5.2), the mean conformational time 74(c), we use the kinetics in-
formation about the HA conformational changes at a given pH to determine the two
remaining parameters : the activation threshold x. and the mean time of a ligand
to a free binding site 7. Using the measured datas (7%(pH = 4.9))"" = k.(pH =
4.9) = 5.78s7 k.(pH = 5.1) = 0.12s7'... | k.(pH = 5.6) = 0.017s™! [36] and a
least squares method for interpolation of the time, we obtain z. ~ 0.7017281 and
the activation time 7 ~ 30.4 * 103s = 8h20min which is quite high. Comparing
this activation time with the narrow escape time NET (time for a proton to find

a binding site), we use that [75] NET ~

0 , where 7 is the interacting radius
4mD,n

between a proton and a binding site and D, ~ 100um?s~! [99] is the apparent
cytoplasmic proton diffusion coefficient. In the absence of further data, we approxi-
mate the endosomal diffusion constant by the cytoplasmic one. For n = 1nm, we
found NET = 0.3s. This result suggests that the binding time is dominated by a
high activation barrier, to guarantee that the conformational change is not trigge-
red randomly, but only upon binding, in agreement with the large stability of the
HA molecule (see table 2 [36]). As a consequence, endosome viral escape should not
occur before a certain amount of protons enter the endosome.

To confirm our analysis, we plotted in Fig. 5.2 the mean rate of HA confor-

mational change k. = (%) as a function of the concentration ¢ and compared it
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FIGURE 5.1 — (a) Virus is endocytosed by the cell and traffics through the endosomal
pathway. It then escapes and, in the case of a DNA-virus, moves freely in cytoplasm to
reach a small nuclear pore and delivers its genetic material to the nucleus. (b) Proton pumps
located on endosomal membrane lower pH in the endosome. At sufficiently low pH, virus
escapes. (¢) When pH decreases under proton pumps activity, ligands bind glycoproteins
or penetration proteins. When sufficiently sites of the protein are occupied, conformational
change occurs and initiate viral escape. (d) Free endosomal ligands bind (forward binding
rate ﬁ) and undind (dissociation rate k4(X)) to glycoprotein or penetration protein (X
is the amount of already bound sites). Once a critical number n. of sites among the ng
available sites of the protein are occupied, conformational change occurs.

with discret experimental values [36]. The matching between theory and experiments
emphasizes that our model accounts well for the mean conformational time based
on cumulative discret bindings of ligands reaching an activating threshold. Moreo-
ver, our analysis reemphasizes that only the dissociation of HA1 subunit requires
an acidic pH and that other rearrangements in HA occur spontaneously [35, 37|.
We highlight that the conformational changes occurs when roughly 70% of HA is
filled (z. ~ 0.7), that is when 6 protons have been added to the protein. Finally
we suggested here that as the HA sites are bound, the activation barrier for the
remaining sites should change by a cooperativity process. The parameters of HA are
summarized in table 5.1.

Dynamics of ligand influx and viral escape. A first approximation of our model
is that endosomes do not contain intralumenal vesicles, thus once a virus disrupts
the endosomal membrane, it is released in the cytoplasm. In the class of naked
viruses, coated by few (& 10) penetration proteins such as parvoviruses (with 7
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TABLE 5.1 — Dynamical parameters of HA

Parameters Description Value
r(zx,c) Binding rate r(z,c) = (NeVons(l — x)) /7
I(z,c) Unbinding rate l(z,c) = (r(z,c)/c)10~BA=2)+4)
Te Conformational change threshold x. = 0.7017281
T Mean time of a ligand to a free binding site 7 =30.4%10%s
ns = 1/€ Number of binding sites ne =29
Vo Volume of the endosome Vo = 4/3mry = 0.38um?

..................

FIGURE 5.2 — Rate of HA conformational changes : k.(c) = (TO(C))_I(dashed line) is
compared with the experimental data (circled crosses)[36].
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VP1 penetration proteins for adeno-associated viruses (AAV) [38], we consider that
endosomal escape occurs when at least one protein changes conformation and forms
a pore in the membrane. In addition, as suggested in an experiment where a wild
type parvovirus was shown to rescue the infectivity of a mutant devoid of escape
protein [40], we consider that all viruses escape when at least one of them disrupts
the membrane.

To model the proton influx through pumps uniformly distributed over the endo-
somal membrane [49], we use a Poisson process of rate A. More generally, we consider
that binding ligands such as proteases, activated at low pH, follow a Poissonian des-
cription. The probability P,(t) of having exactly ¢ ligands in the endosome at time
t is given by

q
P,(t) = e—*t@. (5.5)
q'
The rate A can be inferred from recent experiments where ATP addition in endocytic

vesicles from kidney proximal tubule, leads to pH decay from 7.2 to 6.6 during a
time T' = 5min [49], thus AT = (107%6 — 10772) VuV, leading to

A~ 0.1557 ", (5.6)

Surprisingly, we conclude that on average, 10 protons enter the endosome per minute
and at pH = 5, the number of protons in an endosome of volume V; = 0.38um? is
approximatively equal to 2300. Only n,x. ~ 6 protons are needed for the conforma-
tional change of HA to occur (see table 5.1). We thus assume that bound ligands
to the few penetration proteins do not deplete the free ligands pool of the endo-
some. Consequently, each protein can be treated separately. For viruses coated by
a large number of glycoproteins or penetration proteins such as the influenza (400
HA copies [100]) or the reovirus (200 gy trimers [89]), our analysis does not apply
and future model should account for the depletion of the free ligands pool due to
the binding events.

To estimate the mean ligands concentration c,, at which viruses escape the endo-
some, we estimate the probability PY(c) that a penetration protein changes confor-
mation before a new ligand enters or is activated (the concentration ¢ is fixed).
The probability of no conformational change is p (2o (¢) , t,¢) = [ p(xo(c),y, t, c)dy
where initially z(t = 0) = zo(c). Because a ligand is injected during time ¢ and
t + dt with a rate e *dt, the probability of no conformational changes until a
ligand appears is [ p (xo (c) ,t,¢) e~ Mdt. Thus

P(c) = 1-— /Oooﬁ (zo (c) ,t,c) Ae ™ Mdt
= 1—u(zg(c)), (5.7)

Multiplying equation (5.1) by Ae™* and integrate over time, we get

(Ly = Nu(z) = —Afor0<zx <z,
dufz) = 0 for x =0,
dz
u(z) = 0 forz=zx. (5.8)
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To solve (5.8), we apply the methods of [33] (see the appendix for computational
details) and we obtain

A
A (C(e,¢)) 7"
A (C(e,¢) 7

_ ze—zg(c)
€

G (mc,c)) o (5.9)

Since one protein conformational change is enough to induce viral escape, we es-
timate the probability P.(j) that at least one conformation changes occurs after
exactly j ligands have entered the endosome (or have been activated). P.(j) is the
product of the probabilities that no conformational changes occurs between succes-
sive ligand entrance, until the j* one

() = (1= (1= P2 (e()™™)

(1—P2(c(i)™"" (5.10)

A
(C (e,0))

~
Il
o

where ¢(i) = + ¢y is the concentration associated with the entry (or activation)

1
Vo
of 7 ligands in the endosome (¢ is the initial concentration at pH = 7).
Considering an influx rate A = 0.15s7" (see (5.6)) and a number np = 7 of
active proteins as measured for the AAV 38|, we plotted in FIG. 5.3 (a), the pro-
bability density function (pdf) P, as a function of the number of ligands j. In the
absence of Because specific information on penetration proteins, such as the VP1 of
parvoviruses, we use for glycoprotein HA parameters the ones summarized in table
5.1. Interestingly, FIG. 5.3 (a) shows a large dispersion, indicating that escape can
happen with few ligands, very early in the endosomal trafficking. Viruses must have
escaped when at most 300 protons have entered an endosome (FIG.5.3 (a), which
corresponds to a pH = 5.9, the ligand concentration ¢ when escape occurs is such

_ ze=xg(e)
that x. — zo(c) > € and thus we neglect (% (:cc,c)) " ~0 in formula (5.2)
and (5.30). o
The mean concentration < ¢, >= Zj&;‘?(]) for which viral particles escape
the endosome is (see the appendix)
1 & J A nynp
<en >= 5 jzoll <A+ (0(670@))_1) (5.11)

To estimate the escape time, we consider the density function em(t) = Pr{r. < t}.
Some computations lead to (see the appendix)

em(t) = 1—e ™
) k Xt (At
e e
+ D (N = ,
1 = N[N — )
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FIGURE 5.3 — (a) Escape time distribution as a function of the protons. Parameters for the
HA (table 5.1) are A = 0.1557, np = 7, and n, = 1. (b) Mean escape time as a function
of the entry rate A. (c) Mean escape time as a function of the endosome radius when the
entry rate is proportional to endosome surface. (d) Mean escape time as a function of the
virus number n,,.
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where \; = % ; the probability density function (pdf) is

dem(t) —Xt

t) = ——==X
pTe( ) dt €
[e%S) k
e — (A4 )\) e At

P -

k=1 i=1 Ai Hj:l j;éi( i /\j)
The mean escape time 7, = fooo tpr (t fo (1 —em(t))dt is given by (see the
appendix)

< +Z T 1+/\/)\)> (5.12)

Similarly, we obtain for the variance var(r.) = [ ¢*p,, (£)dt—72 (see the appendix) :

[e.9]

2 2 1
var(te) = 2 + = 2 Z Hle TESWY
323’:1 Hi:l,i;éj(l + i/ A) =2
M a )

For the HA parameters (table 5.1), the protons entry rate (5.6) A = 0.15s™! and
np = 7 penetration proteins, we obtain a mean time 7, and standard deviation
var(t.)) equal to

+

(5.13)

T = 11155 &~ 20min and \/var(r.) = 294s ~ bmin. (5.14)

Using formula (5.12) and (5.13), we evaluate the effect of various parameters on
the mean and variance. In FIG. 5.3 (b) and (d), we plot the mean escape time 7,
(£+/var(r.)) as a function of the ligands entry rate A and the initial number of
viruses in the endosome. Interestingly, for 10 viruses, the mean escape time decays
by 35% compared to a single one. Moreover a large number of viruses, as well as
a higher ligands entry rate, are associated with a more reliable escape time. In a
first approximation, we consider that the number of pumps and the influx rate are
proportional to the endosomal surface : A(r) = (r/r¢)*\ = (r/ry)?0.15s~1. We plot
the mean escape time as a function of the endosome radius (FIG. 5.3 (c¢)). We observe
that the endosomal radius does not impact much the mean escape time and its
variance. Consequently, it seems appropriate a posterior: to have neglected processes
such as endosomal fusion or split [2] in the biophysical modeling of the endosomal
step of viral infection. However, if future observations show that endosomal fusion or
fission events control the endosomal acidification in a more complex way, our model
can be generalized to integrate the time dependency of the influx rate. Another
pitfall of our analysis is that depending on the size of the endosome, a non attached
individual virion should swim in the endosome, and for larger endosome, the mean
position of the virus should impact its escape dynamics. Unless the virions is most of
the time attached to the membrane, it seems more likely that it will cause infection
when it will stay in average closer to the endosomal membrane, when the pH drops.
However, whether or not the virion spends most of its time attached or not to the
membrane is still unclear.
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3 Discussion

The viral endosomal journey depends crucially on pH and timing : on one hand,
viruses must escape before being digested by the late endosomal proteases, while
on the other hand, time is required for some of them to be primed by pH-activated
components of the endosome such as cathepsins. The pH-dependent conformational
change of a glycoprotein (e.g. HA of inluenza virus) or a penetration protein (e.g.
VP1 capsid protein of parvoviruses) is responsible for the first step of endosomal
membrane disruption and viral escape. We first computed the mean time needed for
the number of bound ligands to a glycoprotein or a penetration protein to reach a
critical threshold and trigger conformational change of the protein. We validated our
analysis using experimental data on the pH dependent number of bound protons to
the influenza HA protein [35]. Using our model, we were able to recover the kinetics
of HA conformational change [36] and confirm that only rearrangements of the HA1
subunit requires an acidic pH [35, 37].

The endosomal escape depends strongly on the number of viral par-
ticles. To model endosomal release for naked viruses containing few (about ten)
active proteins, we used the mean time for one of these proteins to change confor-
mation. Using HA dynamical parameters (Table 5.1), when the ligand entry rate
is A = 0.1557! (5.6) and np = 7 penetration proteins, we find that 7. & var(r.) ~
20min £+ 5min. It has been reported that in less than 15 minutes [2], the genetic
material is transported from the cell surface through early endosome compartments
to the late endosome, we thus predict that viruses should escape from the late phase
of the endosome trafficking.

Interestingly, the size of the endosome, that may vary due to fusion or splitting
[2], does not impact drastically the dynamics of the viruses escape, while increasing
the ligands entry rate or the number of viruses, decreases the mean escape time 7,
and the variance var(7.), making the escape process more reliable (FIG. 5.3 (b)-(d)).
When the number of viral particle is increased from 1 to 10, the time 7, is decreased
by 35%. We conclude that the number of endocytosed viral particles and thus the
number of glycoproteins or penetration proteins is a key parameter in the escape
process. Consequently, the number of active escape proteins that can vary with viral
species or serotypes should be considered as a potential target in future genetically
modified or chimeric viral vectors [101].Furthermore, we provided here a general
framework to analyze endosomal escape of most naked viruses. When the ligand
entry rate A and the mean conformational change time curve C'(e,c) for proteins
involved in the endosomal escape would be obtained experimentally, from our model,
we can obtain the mean escape time 7, (5.12) and the ligand concentration < ¢, >
(5.35). It would be interesting to obtain this conformational rate change for VP1,
involved in the parvoviruses endosomal escape.

Limitations and further issues : Our analysis is a first step toward a quan-
titative approach of both enveloped and naked virus endosomal escape. It provides
a tool to explore the multi-dimensional parameter space of endosomal escape and
give a measure of global quantitative outputs such as the mean escape time from
the endosome depends on fundamental parameters, such as the endosomal size or
the influx rate. While the binding of ligands to an active protein up to a critical
threshold and the resulting conformational change seems to be a common feature
of widely disparate viruses, the endosomal escape mechanism is still unclear and
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strongly depends on viral species. Here we presented a simplified model for naked
viruses covered by few active proteins in which, all viruses contained in the en-
dosome, escape rapidly when one of the active proteins binds enough ligands and
becomes activated.

Our model rely on several biophysical and mathematical assumptions. First, we
considered the rate limiting step of the escape process was the binding of ligands to
an active protein up to a critical threshold. Future models should account for the
other steps participating to the escape process : this includes the pore formation
limiting step, involved in membrane disruption [89]. Interestingly, more than one
active proteins should be required to the pore formation.

We have also modeled the proton entry as Poissonian. A better knowledge of the
proton channel dynamics would certainly reduce the error of this approximation,
although we can consider that channels have no memory. Our major mathematical
approximation is the asymptotic solution (5.2) of the Kramer Moyal equation. That
asymptotic relies on the small parameter e = 1/9 which is the reciprocal of the
number of binding sites. The good agreement of that asymptotic solution with the
hemagglutinin data confirms the consistency of our analysis. For enveloped viruses,
conformational change of glycoproteins initiate complex mechanisms, at the origin
of the local fusion between the virus and the endosome membranes. For the influenza
virus, three intermediate and limiting steps have been recognized : (1)the confor-
mational change of HA trimers and their clustering (2) shall precede the formation
of a hemi-fusion stalk (3) and subsequent fusion pore [97|. In summary, our model
should be considered as a starting building block of future attempts to integrate all
these steps together.

Viral fitness and optimality of the delivery process. Although viruses
must escape before being digested by the late endosome proteases, priming of other
low pH activated components to the capsid should impact the infection efficiency in
the later steps, such as the nuclear uncoating and subsequent delivery of the genetic
material [102]. To account for these processes, there must be an optimal range of
pH, [pHpmin; PHomas] (or equivalently a range in the number of endosomal ligands)
in which viruses must escape. When escaping above pH,,.., a viral particle will be
irreversibly damaged by proteases and thus cannot pursue efficiently its infection,
however, when escaping below pH,,;,, priming will be insufficient (see FIG. 5.4 (a))
to conduct the next step. Using the probability that viruses escape in a specific
pH-range (FIG. 5.4 (b)), we obtain the dependency as a function of the number of
viruses in the endosome. Interestingly, we find an optimal number of 5 viral particles,
maximizing the probability to escape in that pH-range.

To conclude, we find here that the priming of viral capsids illustrates how virus
trafficking involves complex host-cell interactions. Another example is the interaction
of the enveloped retrovirus avian leukosis virus with the cell membrane specific
receptor that triggers pH sensitivity of glycoproteins [10], essential for endosomal
membrane fusion and payload delivery. More generally, as a response to host cell
signals, glycoproteins of widely disparate viruses such as the paramyxovirus, the
influenza virus or the HIV undergo successive transformations required for infectivity
[9]. Future models should account for this complex virus-host communication, where
each limiting step impacts viral fate (see FIG. 5.5). As chemically modified viral
vectors are emerging concepts for gene delivery [103], a quantitative understanding
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FIGURE 5.4 — (a) The number of endosomal viruses impacts the escape distribution and
modifies the probability to escape in a given pH range (grey regions, pH € [6.1;6.3] or
equivalently the number of pumped protons is between 90 and 160). We used A\ = 0.155~ %,
np = 7 and the dynamical parameters of HA (table 5.1) The plots are given for 1 and
5 viruses. (b) We show the probability of escape in a given pH range as function of the
number of viruses. 5 viral particles is optimal.

of interactions between viral structural proteins and the cell environment should
benefit drug design and optimization.
Acknowledgement : D. H. research is supported by an ERC-Starting Grant.

4 Appendix

4.1 Computation of u(xy(c))

Far from the boundary, in the long time asymptotic [21]

pla,t,c) e Cl60), (5.15)

and the leading order term of the outer expansion e, is

A
Uouter = Cte = ———— =14 S(e€, ¢), (5.16)

A+ Cl(e,c)

where S(e,c) = Y 2, ﬁ tends to 0 as € goes to 0. However, to satisfy the

absorbing boundary condition u(z.) = 0, we study the leading order term of the
inner expansion ... of u that has to match asymptotically the outer solution
expansion (5.16). In the neighborhood of x = ., we stretch the coordinates [33, 34]

Te—

n = and consider F(n) = Ujpner(x). For the inner and outer expansions to
match, F'(n) has to satisfy
F(0) =0and lm F(n) = tuter = 1 + S(€, ¢). (5.17)
n—00
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FIGURE 5.5 — Schematic representation of the viral infection steps. Each step is rate
limiting (success with probability (p;)1<i<4), the probability of success in each step defines
the fitness (f;)1<i<4 that impacts viral efficiency in future steps of infection.

Injecting F'(n) into the equation

(Ly — Nu(z) = —XAfor0<z <z,
dufz) = 0 for x =0,
dx
u(x) = 0 forz =z, (5.18)

we get in the leading e-order,

3

N -

o0
(e, C E

= 1
n:l

We seek solution F'(n) in the form

F(n) = (1+S(e,c)) (1 —e)

and by reinjecting it in (5.19), we obtain :
A= A1+ S(0) (L—e)

oo
l(ze, c Z |
n:

n=1
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that is :

A= A1+5S(e)(1—e) + |r(zec) (€7 —1)

+l(ze, ) (€77 = 1) | (1+ S(e,c))e . (5.21)

For € sufficiently small, because S tends to zero, we get that v is solution of

A= A1=e")+ |r(zec) (e —1)

+l(ze,c) (77 = 1) ] e (5.22)

thus
r(xe, ) (€ — 1) + l(ze,c) (77— 1) = A =0. (5.23)

The quadratic equation in X = €7 is

X2 - (1 yHaeg) A) TLCCL (5.24)

(e, €) r(ze, C)

and the root X strictly greater than 1 (y > 0) is
1 U(ze,c) + A
X, = o (1428 TA

1 2(( T @0 )

(e 0)+ X A
+\/ (—r(%c) 1) + 2 (xc’c)) (5.25)

Thus v = log(X3) is given by,
1 l(zeyc) + A
vo= log<§<(l+—r(xc,c) )
e o)+ 2 ) A
+\/(—r(xc, 3 1) + 2T(IC, C)>> : (5.26)

When the proton binding and unbinding rates are much smaller than the protons
endosomal entry time scale,r(x,c) > X and I(z,c) > A,, then

l
v & a=log (; (ze, c)) : (5.27)
We finally obtain

u (o (c)) = (1+ S(e, ) (1 - e-va““’) , (5.28)
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that is
A
) = e
zc—xzq(c)

L= (; (xc,c)>_ E

In particular we obtain for PY(c) = 1 — u (x¢ (c))

_ ze—zq(c)

4.2 Computation of < ¢, >

(5.29)

(5.30)

The mean concentration < c;, > at which viral particles escape the endosome is

L TRPG)
Te - N‘/O )
that is
1 2\ Ronip
T D (R (B C0)
j=
j—1
(1= P2 (c(i))™""
i=0
Thus,

Finally, we have

<y >= vao ST =P0(e@)™™.

§=0 i=0

Using expression (5.30), in the approximation

I _xzc—zqg(c)
(; (e, c)) ~ 0,

J

ST vao iH <A +(C <j, c(z')))*)W

§=0 i=0

we get
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(5.31)

(5.32)

(5.33)

(5.34)

(5.35)
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4.3 Computation of cm(t)

The independent events A(t) that k protons have entered the endosome at time

t follow a Poissonnian law Py (t) = %e‘”, and
em(t) = Pr{r, <t|Ay(t)}P(t) (5.36)
k=0

o\ k
Z %G_M (1= Pr{r. > t|Ax(t)}) .

To estimate Pr{r, > t|Ax(t)}, we use the long time asymptotics (5.15) p(z,t,c) ~
t

e 9«9 and consider the random times (7});5, when protons enter the endosome.

The joint pdf f of (11, T5,...,T}) of k protons (|104] theorem 2.3 page 126) is

k!

f(tl» lo, ... vtlc) = t_],c‘logt1<t2<...<tk§t (5-37)
Because,
k—1
P (st = te, (k) [ [ 570 (@, tisn — b, c(d))
i=1
k—1
= H e~ Nilbiri—t) o= Aw(i=tr) (5.38)
i=1
where \; = %, we get that
Lot t
Prir, > t|4y(t)} = / / / oMttt
A A
k—1
[[e et dty. (5.39)
i=1

We now compute Pr{r. > t|Ax(t)} by induction. We start with Pr{r, > t|A;(¢)} =
%fot e—)\l(t—tl)dtl — %176/\—>\1t . If
1

Prir, > t|A(t)} = %zﬂk' (5.40)

Z 1-— 67)\”

Z .
i=1 Ai Hj:l,j;éi O‘i - )‘j)

then Pr{r. > t|Ax41(t)} is equal to
E+1)! [t [
PT{Te > t|Ak+1(t)} = ( tk+1) /; / Ce (541)
t1

t
/ PR s (t—tk+1)dtk+1
ty

k
H e—)\i(ti+1_ti)dtk e dth
i=1
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that is

(k+1)!
Pr{te > t|Axs1(t)} = s / /

e~ Niltir1—t)
ZH "

k=1 4=1

t
/ e M) =Mk (=ter ) gy, dty o dty.

lk

Finally, we have

(k+1)!
Pr{r. > t|Aj:1(t)} = t’““ / /

/ He Ai(tig1—ti)
t .

k=1 4=1

e Mk(t—t) _ o= Akt (t—tr)
dty ...dt;.
( Akl — Ak ) g !

Using (5.41), we obtain

(k+1)! (=)
th+1 ()\k+1 _ )\k)

b 1 — e Mt
> w

i=1 Ai Hj:l,j;éi (>‘z‘ -

Pri{re > t|Apn(t)} =

Z 1—e¢ Ait
] 1J;éz ()\’l )\J) ()\l_)\k+1)

1 — e Mt
M1 T152) Qs = Ag) )
that is,

(k+ D! (=)
tk—i—l ()‘k’-l-l _ )\k)

k-1 (1—e™") (A — A1)
(Z )\z()\z - )\k—f—l) Hk— j 71 ()\l - )\])

i=1 j=1,j#1i

Pr{r. > t|A1 (1)} =

1 —Agt 1 —)\k+1t
+ = .
e IT5= (e — A) A T120 e — )
Thus, we obtain,

(—1)"*2 (k4 1)!

Pr{r. > t|Axs1(t)} = ]

k+1

=1 j=1,5%#i
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(5.42)

(5.43)

(5.44)

(5.45)

(5.46)
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Thus (5.41) holds for all £ > 1. Using (5.41) in (5.37), we have

=L (A)F
em(t) = (k') e M (5.47)

k=1 ’
(1 (=) Rt Zk: | — e )

_ - .

t* i=1 Ai Hj:l,j;éi()‘i - )‘j)
Because, Y .-, k,ke A =1, we get
em(t) = 1—e
o0 k X = (A
e e

+ ) (=N - . (5.48)

; ; Ai [Ty (N = Ay)

4.4 Computation of the mean escape time 7. and the asso-
ciated variance 'Uafr(Te)

The mean time 7, = [ tp-, (t)dt = [° (1 — em(t)) dt for a virus to escape is
1 oo
.- X—zwﬂ (549
k=1
zk’: f0+0<> e~ M _ o= gy
k 9
i=1 Ai Hj:l,j;éi(Ai - )‘j)
that is
_ 1 k1l \ k-1
o= 5+ ; (=)' A (5.50)

1
2 A+ M) TN = )

J=1,j#1

Using a fraction decomposition analysis (the \; are all distinct)

1 ( 1)k+1
T ) _Z Ot T2 551

we obtain
S )\kfl

[, (A +N)

>

+
- 1
<1 ' ;; [T, (1+ /\Z-//\)) ‘ (5.52)

The variance var(r,) = fooo t2p,, (t)dt — 72 =2 fooo t(1—cm(t))dt — 77 is

> =

var(r) — %-22(-»’“ (5.53)

e~ _ o= (ANt gy )

f -,
Z Ai Hj:l,j;éi( i /\j) ’

=1
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that is
var(t,) = et Z (—1)

zk: YN 1A+ X)L,
k e’
i=1 Ai Hj:l,j;éi()‘i - /\j)

Thus, we have

var(t.) =

2
A2
i 2+ \i
i=1 <)\ + A )2 H] lj;éz()\ AJ)

Y (— 1)k+1)\

The partial fraction decomposition of

(5.54)

(5.55)

Be-

cause
k

1
Z A+ A Ty = A)

=1

is the derivative of

k 1
Z A+ M) TT O = A)

=1

we have

2 k2 -t
var(te) = )\2+22)\ (2)\ (Hil()\+)\i)>

!

=
[T (A + ) <

A mathematical induction yields

Consequently, we have

var(t.) = D —
m) = 52 Z o, (A 1<A+A>
A Zj:l Hizl,iyéj(/\ + Az’) =2
(I (10

+

Ty Vs ) L O Ty i)

(5.56)

(5.57)

(5.58)
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that is

2 = 1
var(r,) = v (1 + kzl Hk RS (5.59)

Z?:l Hf:l,i;éj(l + )‘i/)\)> _9
+ — | -7
(T, (1 +2/)

1) Recapitualte the key steps of viral infection.

2) State for which type of virus your work applies, and give main results, ap-
proximations and mathematical tools used, and maybe add in which chapter the
results can be found.

3) then give an outlook. Discuss the most important approximations (biological
and mathematical) you made and how they can be improved. And then show how
your model can be extended to other virus types.
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The outcome whether the entry of a viral particle into a cell leads to an infection
or not depends on various factors. In particular, most DNA viruses have to escape
the endosome in a certain pH range and once they are released in the cytoplasm,
they have to reach a nuclear pore before being trapped in the crowded cytoplasm
or degraded through the ubiquitin-proteasome machinery. While DNA viruses have
developed evolutionary tools to reliably escape the endosome and hijack the cell
transport machinery to efficiently reach the nucleus [5], non viral genes vectors
often fail to escape the endosome before being routed to the degradative lysosomes,
and the cytosolic motion of pure diffusive DNA complexes is limited by physical
and chemical barriers of the cytoplasm |3, 4]. Yet the principles underlying the
viral tools are still largely unknown. This lack of knowledge is also the reason the
efficiency of infection with non-viral gene vectors is still very low. To unravel and
better understand the mechanisms underlying viral infection, we developed in this
work mathematical models for the endosomal step and the free cyoplasmic step,
which are both key early steps of infection. Early models describing viral infection
[6, 7, 8, 48] divide the infection process into several states, eg. endosomal state,
diffusing state ... and use the mass-action law to describe the evolution in time of the
viral state. The main limitation of these models is that the transition rates between
the different states of the virus are mostly fitted to experimental data instead of
being derived from biophysical models at the molecular level. To quantify how cell
and viruses parameters such as the endosome size, the MTs network organization
or the diffusion constant of the virus impact general quantitative outputs such as
the endosomal escape kinetics or the probability the virus reaches alive a nuclear
pore, we constructed stochastic models starting from the single molecule level. We
summarize these models hereafter.

In the fifth chapter, we constructed a biophysical model for the endosomal es-
cape of viruses coated by few active proteins (glycoproteins for enveloped viruses
and penetration proteins for non-enveloped ones), and we computed relative key
quantitative outputs such as the mean escape time from the endosome. The viral
escape is triggered by the conformational change of active proteins that initiate the
membrane disruption. Consequently, to analyze the escape process, we first modeled
the conformational change kinetics of the active proteins by computing the mean
time the number of ligands bound to the active proteins reaches a given threshold
and triggers the conformational change. To model the probability p(x,y,c,t), that
the number of bound ligands is equal to = at time ¢ for a concentration ¢ of li-
gands and an initial number of bound ligands equal to y at time t = 0, we started
using Markov jump process and showed that p(x,y,c,t) is solution of a Kramers-
Moyal equation. Using asymptotic analysis, we computed the conformational change
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kinetics of the active protein as a function of the ligand concentration. Our theore-
tical results agree with the reported kinetics for the influenza hemagglutinin, which
confirms that only the rearrangements in the HA1 subunit of the hemagglutinin are
pH dependents [35, 37]. We considered that the conformational change of a single
active protein was the limiting event to the endosomal escape of viruses coated by
few active proteins such as parvoviruses. Then, modeling the ligands influx rate with
a Poissonian process, we computed the mean time and pH the virus escapes the en-
dosome. Interestingly, we found that the endosomal size had no effect on the escape
dynamics and that the optimal number of viruses in the endosome to escape in the
right pH range was 5.

Concerning the free cytoplasmic step of the DNA viruses after their release in the
cytoplasm, we described their intermittent trajectories, oscillating between diffusion
and active motion along MTs, with a Langevin equation containing a diffusion term
and a drift accounting for the active transport periods. The first two chapters were
dedicated to calibrate the drift amplitude with respect to the MTs network orga-
nization and some dynamical parameters of the virus such as its diffusion constant
and its unbinding rate from MTs. Then, using this Langevin stochastic description,
we computed the probability the virus reaches a nuclear pore before being trapped
or degraded, and the associated conditional mean time. Because the pores occupy a
small fraction of the nuclear envelope, these computations are based on the narrow
escape theory [30] and we studied in the third chapter the impact of the pores dis-
tribution on both the probability and the MFPT. Interestingly a key parameter in
the gene delivery dynamics is the number of nuclear pores rather than the surface
covered by the nuclear pores : The mean arrival time to a single big absorbing pore
that covers 2% of the nuclear surface is twice as large as the mean arrival time to
one over 100 pores that cover the same surface (see chapter 3). Finally, in the fourth
chapter we computed the MFPT of the first virus when many viruses traffics in the
cytoplasm and we extended previous results in the large degradation rate limit.

Viral infection is an extremely diversified and complex process, and to obtain first
and tractable molecular models of this process we had to introduce many biophysical
approximations that can be further improved in future work. For example, a key
approximation in the endosomal step was the Poissonian description of the protons
influx and a better knowledge of the proton channel dynamics would certainly reduce
the error of this approximation, although we can consider that channels have no
memory. We also assumed the conformational change of the active protein was the
limiting event in the escape process, and future models shall account for the other
steps participating to that process, particularly the pore formation limiting step,
involved in membrane disruption [89]. Concerning the free cytoplasmic step, we
assumed the free diffusion step to be Brownian motion. Yet, the cell cytoplasm is
very crowded and a fractional subdiffusive type process leading to fractional diffusion
effects should be considered in a future analysis.

To get concise and readable formulas that link the different key parameters of the
infectious process, we also made mathematical approximations by solving asymp-
totically most of the equations, that is we provided the first leading order term of
solutions in a certain small parameter. For example, in the endosomal step, we sol-
ved the Kramers-Moyal equation using the WKB theory with the small parameter
€ = 1/ns where ng > 1 is the number of sites of the active protein that bind ligands,
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while in the free cytoplasmic step, the nuclear pores occupying a small fraction of
the nuclear envelope, we used the narrow escape theory to get concise results for the
probability and the mean time the DNA viruses reach one of these small absorbing
pores. In a future work, it should be interesting to pursue the asymptotic expansion
of the principal quantitative outputs by computing lower order terms. In particular,
it should be interesting to quantify how the conditional MFPT to a small absorbing
pore depends on the pores organization over the nucleus surface by expanding in €
the linear system (3.32) in the chapter 3. Finally, the mathematical analysis of the
free trafficking step is based on the continuous Langevin description of trajectories
and the effective drift calibration in a simplified two-dimensional radial geometry.
Although the radial geometry is a good approximation of flat culture cells, the ca-
libration computations strongly rely on the conformal mapping of a wedge domain
into the upper half plane and it is not clear how to generalize these computations
in a three-dimensional cell. Consequently, a new calibration methodology for three
dimensional domains is required and should be investigated carefully.

The biophysical models we constructed concern a certain class of viruses : the
endosomal escape model applies for viruses coated by few active proteins such as
parvoviruses and the free trafficking model deals with DNA viruses that have to
reach a nuclear pore to deliver their genome into the nucleus. In a future work, these
models shall be extended to other viral species and new models shall be developed for
the other steps of infection such as the nuclear import of the genome. In particular
it will be interesting to analyze the endosomal escape of enveloped viruses coated
by many active proteins such as the influenza (400 HA copies [100]) where the
binding of ligands depletes significantly the free ligands pool in the endosome, and
where the conformational change of glycoproteins initiate complex mechanisms, at
the origin of the local fusion between the virus and the endosome membranes. For
the influenza virus, three intermediate and limiting steps have been recognized and
shall be integrated in the modeling : (1) the conformational change of HA trimers
and their clustering (2) the formation of a hemi-fusion stalk (3) the final fusion pore
formation [97].

During the infectious process, the cellular environment triggers molecular rear-
rangements of the viral capsid or envelope that in turn modify the viral behavior. For
example, the capsid denaturation of the AAV capsid in the endosome increases its
cytoplasmic ubiquitination [11| that competitively triggers its proteasome-mediated
degradation and helps capsid disassembly and subsequent nuclear import [11]. It
is not clear how to integrate this complex host-cell communication in quantifying
the infection success, but the models we developed for each early step of infection
shall be coupled, the state of the virus computed at the end of a step, such as its
capsid denaturation when it escapes the endosome, serving as an input parameter
for the next step. Experimental data on the impact of the viral state on its dynami-
cal parameters are thus needed and, in particular, it will be interesting to quantify
how the viral capsid denaturation influences its degradation rate in the cytoplasm.
Finally, future models will have to integrate the cell specificity through its complex
geometry and environment. In particular, by controlling the level of tau proteins,
the cell regulates the binding rate of molecular motors to the MTs and thus the
velocity of the transported viruses [105].
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Appendix : Brownian simulations

We performed the Brownian simulations using Scilab. Hereafter, we present the
code used in the chapter 3 to compute the mean first passage time of a Brownian
particle to an absorbing pore when many pores are uniformly distributed over the
spherical surface of the nucleus. In a first time, we tested the convergence of the al-
gorithm for decreasing time steps and an increasing number of Brownian trajectories
and we finally calibrated the time step dt such that v/ Ddt = 5%e where D is the dif-
fusion constant of the virus and e the radius of a nuclear pore, and we ran k = 1, 000
Brownian simulations. We used the following rule to test the convergence of the
algorithm : we chose an initial time step dt, = (¢/D))* and we initially ran ky = 100
Brownian simulations. We then computed the mean arrival time 7, for ky = 100
Brownian trajectories and a decreasing time step dt = dtg, dt = d—;“, dt = %, dt = dl%)
|7 (dt=20) —7,, (dt="20)|

dtg

Tn (dt= S0 )

and dt = 42, Because > 1%, we then ran 1,000 Brownian si-

dt dt
n (dt:l—g )—Tn(dt= 2—((])) |

T (dt=20)

< 1%.

mulations and our convergence rule was then verified : |

Scilab code

pi = %pi ;

//parameters

//cell radius

r_c = 15;

//viral diffusion constant

d_v = 1.3;

//nuclear radius

rn=2>5,;

//number of Brownian trajectories
n_v = 1000;

//Constant drift

B=0.2;

//number of absorbing pores (table)
nb_trou_tab=[1,2,3,5,10,20,50,100,300] ;
//size of the table above
temp=size(nb_trou_tab);
ite=temp(1,2);

//degradation rate

k=10/3600;
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//initialisation

//number of killed viruses
tue_drift=zeros(1l,ite);

//conditional MFPT to an absorbing pore
temps_drift=zeros(l,ite);

//theoretical MFPT without interaction
theo_temps=zeros(l,ite);

//theoretical MFPT with interaction
theo_tempsbis=zeros(1l,ite);

//theoretical probability without interaction
theo_proba=zeros(1l,ite);

//theoretical probability with interaction
theo_probabis=zeros(1l,ite);

//1loop
for 1=1:1:ite,

//number of pores

nb_trou=nb_trou_tab(1,1);

//radius of a pore (computed such that the surface covered by the pores=$2\%$ of the :
epsilon = 4*sqrt(0.02/(nb_trou));

dt0=((1/d_v)*(0.05*%r_n*epsilon)~2);

//the pores are uniformly distributed over the nuclear surface

test=1;

while (test>0) do,

phis_trou=pi.*rand(1,nb_trou,’uniform’);
thetas_trou=-alpha/2.*ones(1,nb_trou) + alpha.*rand(l,nb_trou,’uniform’);
distances=100.*ones(nb_trou,nb_trou);

x_trou=r_n*sin(phis_trou) .*cos(thetas_trou);

y_trou=r_n*sin(phis_trou) .*sin(thetas_trou);

z_trou=r_n*cos(phis_trou);

for i=1:1:nb_trou,

for j=i+l:1:nb_trou,

distances(i,j)=sqrt((x_trou(l,i)-x_trou(l,j)) 2+(y_trou(l,i)-y_trou(l,j))~2+(z_trou(l
distances(j,i)=distances(i,j);

end;

end;

templ=bool2s(distances<r_n*epsilon/2);

test=sum(templ) ;

end;

//initial positions of the viruses (uniformly distributed over the cell surface)
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theta =-pi.*ones(1l,n_v) + 2xpi.*rand(l,n_v,’uniform’);
phi = pi.*rand(1,n_v,’uniform’);

r=r_c.*ones(1,n_v);

dt=dt0.*ones(1,n_v);

t=dt;

//killed viruses counter
compteur_tue=0;

//initialisation of MFPT
time=0;

//1loop

taille = n_v;

while (taille>=1) do
//increment
temp2=size(r) ;
taille=temp2(1,2);

//diffusion. ..

dx = sqrt(2*d_v.*dt).*rand(1,taille, normal’);
dy = sqrt(2xd_v.*dt) .*rand(1,taille, ’normal’);
dz = sqrt(2xd_v.*dt) .*rand(1,taille, ’normal’);
temp_x = dy + (r.*sin(phi)).*cos(theta);
temp_y = dx + (r.*sin(phi)).*sin(theta);
temp_z = dz + r.*cos(phi);

r = sqrt(temp_x. 2+temp_y. 2+temp_z."2);
theta = atan(temp_y,temp_x);
phi = acos(temp_z./r);

//+drift
drift = (B.*dt) .*ones(1,taille);
r=r-drift;

//External reflecting condition (r=R)

correction0 = zeros(1l,taille);

correction0 = (r-r_c.*ones(1,taille));

correctionl bool2s(correction0>0.0) .*correctionO;
correctionO 2.%correctionl;

r = r-correctionO;

correction4=ones(1,taille);
for j=1:1:nb_trou,
phi_trou=phis_trou(1,j);
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theta_trou=thetas_trou(l,j);

//Reflecting condition on the nuclear surface outside the absorbing pores

correction? = zeros(l,taille);
correction2=(sin(phi_trou)*cos(theta_trou)).*sin(phi).*cos(theta)+(sin(phi_trou)*sin(
correctiond = correction4.x*bool2s(correction2<0.0);

end;

correction? = correction4.*r;

correction8 = r_n.*correction4;

correction9 correction8-correction7;

correctionl0 = bool2s(correction9>0.0).*correction9;

r = r+2.*correctionlO;

//MFPT

temp_time=zeros(l,taille);
temp_time=r-r_n.*ones(l,taille);
temp_time_bis=bool2s(temp_time<0.0);
time=time+t*temp_time_bis’;

//we remove the absorbed viruses
pluto = r;

r = r(pluto>r_n);

theta = theta(pluto>r_n);

phi = phi(pluto>r_n);

t=t (pluto>r_n);

dt=dt (pluto>r_n);

//increment
temp2=size(r);
taille=temp2(1,2);

t=t+dt;

//killing rate

kill=k.x*dt;

//some viruses are degraded..
killing = rand(1,taille,’uniform’);
temp=taille;

if taille>0 then,

r = r(killing>kill);

theta = theta(killing>kill);
phi = phi(killing>kill);
t=t(killing>kill);

dt=dt (killing>kill);

//increment
temp2=size(r);
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taille=temp2(1,2);

end;

//total number of killed viruses
compteur_tue=compteur_tuet+temp-taille;
end;

//simulated conditional MFPT
temps_drift(1,1)=time/(n_v-compteur_tue);
//simulated probability

tue_drift(1,1) = compteur_tue/(n_v);

eta=epsilon/2*r_n*nb_trou;
vol=(4/3)*pi*(r_c~3-r_n"3);

temp=(pi/(d_v*eta)) .*(exp(-(r_n/d_v) .*B) .x((d_v*r_n~2)./B+(2*d_v~2*r_n) ./ (B."2)+(
templ=exp(-(r_n/d_v) .*B);
temp2=(pi/(d_v*eta)+pi/(d_vxpi*r_n)) .*x(exp(-(r_n/d_v) .*B) .*x((d_v*r_n~2)./B+(2xd_x
tempsssl=temp./(templ);

tempsss2=temp?2./templ;

//theoretical values
theo_proba(l,1)=1/(1+k*tempsssl);
theo_probabis(1,1)=1/(1+k*tempsss2);
theo_temps(1,1)=theo_proba(l,l)*tempsssi;
theo_tempsbis(1,1)=theo_probabis(1l,1l)*tempsss2;
end;
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