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Quantifying intermittent transport in cell cytoplasm
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Active cellular transport is a fundamental mechanism for protein and vesicle delivery, cell cycle, and
molecular degradation. Viruses can hijack the transport system and use it to reach the nucleus. Most transport
processes consist of intermittent dynamics, where the motion of a particle, such as a virus, alternates between
pure Brownian and directed movement along microtubules. In this Rapid Communication, we estimate the
mean time for a particle to attach to a microtubule network. This computation leads to a coarse grained
equation of the intermittent motion in radial and cylindrical geometries. Finally, by using the degradation
activity inside the cytoplasm, we obtain refined asymptotic estimations for the probability and the mean time

a virus reaches a small nuclear pore.
DOI: 10.1103/PhysRevE.77.030901

INTRODUCTION

Cell transport, which may involve vesicles or proteins, is
essential for cellular function and homeostasis. In general
free diffusion in the cell cytoplasm is not efficient and many
particles such as large viruses cannot pass the crowded cyto-
plasm [1] without hijacking the complex cellular transport
machinery and use molecular motors, such as dyneins, to
travel along microtubules (MTs) toward the nucleus. Both
vesicular and viral motions alternate intermittently between
periods of free diffusion and directed motion along MTs [2].
Such viral trajectories have been recently monitored by using
new imaging techniques in vivo [3,4].

The switch nature of the motion imposes a complex be-
havior of the particle trajectories which depends on the num-
ber and distribution of MTs, the rate of binding and unbind-
ing, and the diffusion constant of the free particle. Some
physical properties, such as the mean velocity of trajectories,
has been obtained for the motion in a domain made of par-
allel stripes, in which a random particle has a deterministic
motion on the stripes and pure diffusion outside [5]. In the
case of a population of motors, at equilibrium between free
diffusion and bound on MTs, the motor distribution has been
studied in cylindrical and radial geometries in [6,7]; the au-
thors estimate the forward binding rate using Brownian
simulations in [6] and experimentally in [7].

We consider here a particle x(¢), which can be described
using the stochastic rule:

f
s \V2Ddw for x(7) free, M
A\ for x(¢) bound,
where w is a standard Brownian motion, D the diffusion
constant, and V the velocity of the directed motion along
MTs.

In this Rapid Communication, we compute the mean first
passage time of a single particle to a population of MTs. We
thus provide an analytical expression of the forward binding
rate of a motor to MTs in both radial and cylindrical geom-
etries. Using the analytical expression of the forward binding
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rate, we propose a coarse-grained description of a switch
dynamical motion of a particle, which can either be a virus,
a vesicle, or a molecular motor. This description, which is
the main result of our paper, is a fundamental step to esti-
mate the probability and the mean time to arrive at a small
target. Moreover, using this description, we obtain the steady
state distribution of a virus in a MT network without resort-
ing to the assumption of a two-state model [7,3].

We thus compute an effective steady state drift b(x) such
that the particle motion (1) can be coarse-grained by the
stochastic equation:

dx =b(x)dr + \2Ddw. 2)

Using results derived in [10], Eq. (2) and the degradation
activity in the cytoplasm due to protease or lysosome, we
obtain asymptotic estimates of the probability and the mean
time for a virus to reach a nuclear pore. The problem of
finding a small target is ubiquitous in cellular biology and
recent theoretical studies [11,12] suggest that the geometrical
organization of the medium plays a fundamental role in this
search process.

MATHEMATICAL MODELING

We represent the cell cytoplasm as a bounded domain (),
whose boundary J€) consists of the external membrane (),
and the nuclear envelope, both of which form a reflecting
boundary JN, for the trajectories of Eq. (2), except for small
nuclear pores JdN,, where they are absorbed. The ratio of
boundary surface areas satisfies e=|dN,|/|0Q|<1. We
model the virus degradation activity in the cell cytoplasm as
a steady state killing rate k(x) for the trajectories of Eq. (2),
so the survival probability density function (SPDF) is the
solution of the Fokker-Planck equation [13]

op

—=DAp-V -bp-kp,
o P D — kp

p(x,0) =pi(x),
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with the boundary conditions

p(x,6)=0 on dN,, J(x,1)-ny=0 on IN,U Q¢ (3)

where n, denotes the normal derivative at a boundary point
x. The flux density vector J(x,?) is defined as

J(x,t) == DVp(x,1) + b(x)p(x,1). (4)

The probability Py and the mean time 7 that a trajectory of
Eq. (2) reaches N, are given by the small hole theory for
two-dimensional domains () and drifts b(x)=-V®(x), as
[10]

In(1/€
PN _ e—(ID(x)/DdSX g e_(b(x)/Dk(X)dX
199 J 0 Dm Jgo
. RS PGS
10Q] ) 50
In(1/e In(1/€e
- ; ) o~ POD gy In(1/¢) e~ PP (x)dx
ar Q Dw Q
1
~®(x)/D
F—— | v )
109 J ;0 ”

Hereafter, we derive explicitly the steady state drift b(x) as a
function of some geometrical and dynamical parameters of
the cell (number of MTs) and the virus (binding and unbind-
ing rates, the mean velocity V of the directed motion, and the
diffusion constant D).

GENERAL METHODOLOGY

To derive an expression for b(x), we consider the motion
of a virus between the moment it enters the cell at the outer
membrane and the moment it reaches the absorbing bound-
ary JN,. Its motion alternates between free diffusion, for a
random time 7, until it hits a MT and binds. It continues in a
directed motion along the MT for a mean time #,, and a mean
distance d,,=|V/|t,, until it is released and resumes free dif-
fusion. The steady state drift is chosen to be constant for a
sufficiently small step, such that the mean time 7+7,, to the
first release at a point X; is the same as that predicted by Eq.
(2) (see Fig. 1). This approach leads to explicit expressions
for the steady state drift for two-dimensional radial and cy-
lindrical geometries.

THE STEADY STATE DRIFT FOR A TWO-DIMENSIONAL
RADIAL CELL

We consider a two-dimensional cell cytoplasm which is
an annulus () of outer radius R and inner radius & (nuclear
surface) with N MTs radially uniformly distributed. They
irradiate from the nucleus to the external membrane and the
angle between two neighboring ones is @ =2/N. The two-
dimensional approximation applies for culture cells which
are flat [14] due to the adhesion to the substrate. In that case
the thickness can be neglected in the computation. Before
reaching a small nuclear pore, a virus has an intermittent
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FIG. 1. Fundamental step is represented with a dotted line; a
virus starts at a position x,, diffuses freely, binds to a MT over a
distance d,,, and is then released at a final position X¢. The solid line
represents a trajectory generated by the steady state equation (2). In
the parentheses, we point out the mean times for each portion of
trajectories.

dynamics, alternating between diffusing and bound periods
(see Fig. 2). Because the MTs are uniformly distributed, we

consider the fundamental domain ) defined as the two-
dimensional slice of angle ® between two neighboring ones.

In €, the fundamental step described above is as follows: the
virus starts at a radius r, with an angle uniformly distributed
in [0;0], it binds to a MT at a time 7(r;) and at a radius
7(rp). On the MT, it has a radially directed movement toward
the nucleus during a mean time ¢,, and over a distance d,,
=|[V|¢,,. Finally, the virus is released with a @-uniformly
distributed angle at a final radius r;=7(ro)—||V|, (see Fig.
3). In most eukaryotic cell large asters, there are from 600 to
1000 MTs [7]. We can estimate the average number N of
MTs per cell cross section as follows: For a cell thickness
h=9 um, [7], an interaction range y=50 nm between the
MTs and the molecular motors [9], and for the Adeno asso-
ciated virus (AAV) diameter d=30 nm [4], we obtain for a
radial MT organization in a thin cylindrical cell that the
range of N is between 600(2y+d)/h and 1000(2y+d)/h, that
is, 9 to 15. We are thus in a regime where ® <1. For r
<R, by neglecting the reflecting external boundary at r=R,

Q) becomes an open wedge and thus using the standard meth-
ods from [15,16], we obtain

Virus
trajectory

Brownian
motion

movement

oQ

Microtubules

FIG. 2. Two-dimensional radial cell with radially equidistributed
MTs. We show a virus trajectory alternating between bound and
diffusive periods in cytoplasm.
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FIG. 3. A fundamental step in Q). The virus starts at a radius 05
with an angle uniformly distributed in [0;®]; it diffuses freely dur-
ing a time 7(r() until it binds to a MT at a mean radius 7(r); it has
then a directed motion over a distance d,,=|V||¢,, before being re-
leased randomly at a final radius r,. Mean times of each piece of the
fundamental step are written inside parentheses.

7(ro) = r?@%12D, (o) = ro(1+ 0%12). (6)

In radial geometry, b(x)=b(r)(r/|r||) and the MFPT u(r,) of
a virus starting at ry and ending at position ry, described by
Eq. (2), satisfies [17]

DAu—-b(rg))Vu=-1,
d
d—L:(R) =0 and u(r)=0, (7)

where we approximated b(r) by b(ry). The solution of Eq.
(7) is

[b(ro)/D](u-v)
u(rg) = J f ————du|dv. (8)
Dv
For D<1, using the Laplace method,
R ue—[b(ro)/D](u—v) 1
du = . 9)
v Dv b(rp)

Thus, in first approximation, u(ro) = (ro—ry)/ b(r,). To obtain
the value b(r,), we equal the MFPT u(r,) from r, to r; com-
puted from Eq. (2) with the one obtained from an intermit-
tent dynamic: 7(ry)+1,,. Consequently, we get

-r;  d,—r®%12
b(ro) = = 5> .
T(}’O) +1, 1,+ ry®</12D

(10)

TESTS AGAINST BROWNIAN SIMULATIONS

We impose reflecting boundaries at the external mem-
brane r=R and we tested the theoretical steady state distri-
bution against the one obtained by running empirical inter-
mittent Brownian trajectories in the pie wedge domain. For a
potential field, the steady state distribution satisfies DAp
-V[bp]=0 in Q with reflecting boundary condition
J(x,7)-ny=0 on J€). The distribution p in a two-dimensional
radial geometry is
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FIG. 4. Steady state distributions. Dashed line: Virus distribu-
tion (11) with the effective drift b(r) (10); solid line: Empirical
steady state distribution obtained by running 10000 intermittent
Brownian trajectories. The cell radius is R=20 um and ®=1/6.

R
p(r) = e_q)(r)/D/ J eI p dr, (11)
0

which should be compared to the distribution of [7]. The
potential @ of b=-V® is obtained by integrating Eq. (10)
with respect to r,

) D
—_r) — Zin(12D1,, + r20?).
V12Dt,,

(12)

In Fig. 4, we plotted the steady state distribution given in Eq.
(11) against the distribution obtained by the intermittent em-
pirical equation (1). The parameters are chosen such that the
viruses move toward the nucleus (observed in vitro, loaded
dynein moves during 1 s over a distance of 0.7 um [18]), we
thus take 7,,=1 s and d,,=0.7 um; furthermore, the diffusion
constant is D=1.3 um? s~ as observed for the AAV [4]. The
nice agreement of both curves, which is the central result of
this Rapid Communication, confirms that our coarse-grained
method accounts well for the switch system (1).

COMPUTATION OF Py AND 7y

We derive now asymptotic expressions in the small diffu-
sion limit D < 1; for the probability Py and the mean time 7y
a virus arrives at a small nuclear pore. We apply Laplace’s
method in formulas (5) for a radial geometry. When the deg-
radation rate k(r) is taken constant, equal to k in the neigh-
borhood of the nucleus = and when 12d,,>r®?, b(r)>0
so that ® reaches its minimum at =5, we get

b(s) (17928
n(1/€28k +5(8) V7 In(1/€)28ky + b()

N=

A Taylor expansion for @ <1 gives

d Kdé(d,, 6+ Dt
PNz m (1 _ ( m m) ®2>’ (13)
d,+K 12Dt,d,(d,, + K)
K 8(d,,6+ Dt,,) )
~ 1 - -0 14
™ k(d,,,+K)< 201, (d + K) (14)

where K=2k,t,, In(1/€).
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FIG. 5. Dendrite cross section. The N MTs are thin cylinders
uniformly distributed inside the dendrite.

We can now propose the following predictions: because
nuclear pores occupy a fraction €=2% [19] of the nucleus
surface (radius 6=8 wum) and the measured degradation rate
for plasmids [20] is k=(1/3600) s~!, we obtain from formu-
las (13) and (14) that

Py=~943%, 7y=~205s. (15)

We conclude that the infection efficiency is very high, while
the mean time to reach a nuclear pore is of the order of
3 min. It is interesting to compare this time with the 15 min
reported in [4], which accounts for all the viral infection
steps from the entry to the final nuclear import. This differ-
ence between the two times indicates that the phase where
the virus is inside an early endosome (EE) may last 10 min.
Indeed, the endosomal phase ends once the EE has matured
into a late endosome (LE) [21], which lasts approximately
10 min [22]. To finish, we shall note that a free diffusing
virus would reach a nuclear pore in about 15 min [11].

THE CYLINDRICAL GEOMETRY

Many transport mechanisms such as viral (herpes virus
[23]) and vesicular occur in long axons or dendrites, which
can be approximated as thin cylinders (radius R and length
L). To derive a quantitative analysis of viral infection in that
case, we follow the method described above and compute the
steady state drift that accounts for the directed motion along
MTs. We model the N MTs parallel to the dendrite principal
axis as cylinders (radius €e<<R, length L). The cross section
Q) of the dendrite is shown in Fig. 5. Due to the cylindrical
symmetry, for any position x, the steady state drift b(x) is
equal to Bz where B is a constant and z the principal axis
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unit vector along the dendrite. In a small diffusion approxi-
mation, the leading order term of B is equal to the effective
velocity [5,6]: B=d,,/(t,,+7), where 1, is the mean time the
virus binds to a MT, d,,=|[V|t,, the mean distance of a run,
and 7 the MFPT to a MT. To derive an expression for 7, we
consider the cross section () and impose reflecting boundary
condition at the external membrane of the dendrite (r=R)
and absorbing ones at the MT surfaces. In long time approxi-
mation, for a MT radius e<1, 7 is asymptotically equal to
1/\D where \ is the first eigenvalue of the Laplace operator
in Q) with the boundary conditions described above ([17], p.
175). The leading order term of \ as a function of € is [24]
A=27N/|Q|In(1/€), where |Q|=7R>. Thus the MFPT to a
MT is =1/\D=R*In(1/€)/2ND, and the steady state drift
amplitude B is given by
d, 2NDd,,

B= = . 16
t,+7 2NDt,+R*In(1/€) (16)

We conclude that in the limit 7,, << 7, the effective velocity is
proportional to the number of MTs: B=N[2Dd,,/
R?1n(1/€)], as already observed in [7].

CONCLUSION

Intermittent dynamics with alternative periods of free dif-
fusion and directed motion along MTs characterizes many
cellular transports. We have developed a model to estimate a
steady state drift such that the intermittent dynamic can be
described by an overdamped limit of the Langevin equation.
Our method gives explicit results in a two-dimensional radial
cell and in a cylindrical dendrite or axon. The steady state
description of the movement enables us to estimate the prob-
ability a virus reaches alive a small nuclear pore and its mean
time. Because viruses are very efficient DNA carriers, under-
standing and quantifying their movement in the cell cyto-
plasm would be very helpful for designing synthetic vectors
[25]. In a future work, it would be interesting to derive
steady state drifts for three-dimensional geometries.
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