Feuille de TD n° 6 : Dérivation

Exercice 1.

Soit $f:[0,+\infty[\to\mathbb{R}$ continue admettant une limite l finie en $+\infty$. Montrer que f est bornée. Montrer de plus que si f est périodique, elle est alors constante.

Exercice 2.

Les fonctions suivantes sont-elles dérivables en $0: f(x) = \frac{x}{1+|x|}$ et $g(x) = x \sin(x) \sin(1/x)$ si $x \neq 0$ et g(0) = 0.

Exercice 3.

Soit $f:[0,1]\to\mathbb{R}$ dérivable vérifiant f(0)=f(1). On définit g sur [0,1] par

$$g(x) = \begin{cases} f(2x) & \text{si } 0 \le x \le 1/2\\ f(2x-1) & \text{si } 1/2 \le x \le 1 \end{cases}$$
 (1)

g est-elle continue? dérivable? Sinon quelle hypothèse faut-il rajouter pour que ce soit le cas?

Exercice 4.

Etudier si les fonctions suivantes sont dérivables et C^1 sur \mathbb{R} :

$$f(x) = \begin{cases} x^2 \sin(1/x) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$
 (2)

$$g(x) = \begin{cases} x^3 \sin(1/x) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$
 (3)

Exercice 5.

Soit f une fonction dérivable en un point $x_0 \in \mathbb{R}$. Montrer que

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h} = f'(x_0).$$

Réciproquement, si la limite précédente existe, peut-on dire que f est dérivable en x_0 ?

Théorème de Rolle et Accroissements finis

Exercice 6.

Soit f une fonction C^1 sur [0,1]. On suppose que f(0)=0 et que f'(x)>0 pour tout $x\in [0,1]$. Montrer qu'il existe m>0 tel que $f(x)\geq mx$.

Exercice 7.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction bornée et dérivable telle que $\lim_{l \to \infty} f' = l$. Montrer que l = 0.

Exercice 8.

On appelle polynôme de Legendre les polynômes $P_n = ((X^2 - 1)^n)^{(n)}$.

- Calculer le degré de P_n et son coefficient dominant (par récurrence...).
- Montrer que P_n s'annule exactement en n points deux à deux distincts de]-1,1[. (On procèdera par récurrence sur $Q_p = \left((X^2 1)^n \right)^{(p)}$)

Exercice 9.

Soit $f: [0, +\infty[\to \mathbb{R} \text{ une continue, dérivable sur }]0, +\infty[$ et telle que $f(0) = \lim_{+\infty} f$. Montrer qu'il existe $d \in]0, +\infty[$ tel que f'(d) = 0.

Exercice 10.

Soient $f, g : [a, b] \to \mathbb{R}$ continues sur [a, b] et dérivables sur [a, b].

- Montrer qu'il existe $c \in [a, b]$ tel que g'(c)(f(b) f(a)) = f'(c)(g(b) g(a)) (on appliquera le théorème de Rolle à la fonction h(x) = f(x)(g(b) g(a)) g(x)(f(b) f(a))
- En déduire que si $\lim_{x\to a^+} \frac{f'(x)}{g'(x)} = l$, alors $\lim_{x\to a^+} \frac{f(x)-f(a)}{g(x)-g(a)} = l$.
- Application : déterminer $\lim_{x\to 0^+} \frac{\cos(x)-e^x}{(x+1)e^x-1}$

Dérivées Successives

Exercice 11.

On considère $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} 0 \text{ si } x \le 0\\ e^{-1/x} \text{ si } x \ge 0 \end{cases}$$
 (4)

- Montrer que f est C^{∞} sur $]0, +\infty[$ et que pour tout x > 0, $f^{(n)}(x) = e^{-1/x}P_n(1/x)$ où $P_n \in \mathbb{R}[X]$.
- Montrer que f est C_{∞} sur \mathbb{R} .

Exercice 12.

Déterminer la dérivée d'ordre n de la fonction $f(x) = (x-a)^n (x-b)^n$ avec a, b deux réels. En étudiant le cas a = b, trouver la valeur de $\sum_{k=0}^{n} (C_n^k)^2$.

Exercice 13.

Calculer la dérivée n-ième des fonctions suivantes :

$$u(x) = x^{2} \sin(x), f(x) = x^{n-1} \ln(1+x).$$
(5)