Contôle continu 2

lagache@biologie.ens.fr

15 Décembre 2009

1 Algèbre (10 points)

On se place dans \mathbb{R}^3 .

- 1. Donner la dimension et une base du sous espace défini par $F = \{(x,y,z) | x + y + z = 0\}$
- 2. Donner l'équation du plan affine F' parallèle à F passant par A(1,1,1).

Soient les vecteurs $u_1(1,0,1)$, $u_2(1,1,1)$, $u_3(0,1,0)$ et $u_4(1,2,1)$.

- 1. Quelle est la dimension de $E = Vect(u_1, u_2, u_3, u_4)$?
- 2. Extraire une base de E parmi u_1, u_2, u_3, u_4 .
- 3. Donner une équation cartésienne de E.

2 Fonctions (10 points)

2.1 Exercice 1 (5 points)

Soit $f: \mathbb{R} \to \mathbb{R}$ telle que $\forall x > 0, f(x) = x\sqrt{x}$ et $\forall x \leq 0, f(x) = 0$. f est-elle C^1 sur \mathbb{R} ? C^2 ?

2.2 Exercice 2 (5 points)

Soient $(a, b) \in \mathbb{R}^2$ tel que $a < b, g : [a; b] \to \mathbb{R}$ de classe C^1 sur [a; b] et deux fois dérivable sur [a; b[. On veut montrer qu'il existe $c \in [a; b[$ tel que

$$g(b) = g(a) + (b-a)g'(a) + \frac{(b-a)^2}{2}g''(c).$$

On introduit pour cela la fonction $\phi:[a;b]\to\mathbb{R}$ telle que $\phi(x)=g(x)-(x-a)g'(a)-\frac{(x-a)^2}{2}A$ où A est le réel tel que $g(b)=g(a)+(b-a)g'(a)+\frac{(b-a)^2}{2}A$.

- 1. En appliquant le théorème de Rolle à ϕ sur [a,b], montrer qu'il existe $u\in]a;b[$ tel que $\phi'(u)=0$
- 2. Conclure en appliquant le theorème de Rolle à ϕ' sur [a, u].